Routing and Wavelength Assignment in Optical Networks Using Logical Link Representation and Efficient Bitwise Computation

Routing and Wavelength Assignment in Optical Networks Using Logical Link Representation and... In this paper, we propose and evaluate a new approach for implementing efficient routing and wavelength assignment (RWA) in wavelength division multiplexing (WDM) optical networks. In our method, the state of a fiber is given by the set of free wavelengths in this fiber and is efficiently represented as a compact bitmap. The state of a multiple-fiber link is also represented by a compact bitmap computed as the logical union of the individual bitmaps of the fibers in this link. Likewise, the state of a lightpath is represented by a similar bitmap computed as the logical intersection of the individual bitmaps of the links in this path. The count of the number of 1-valued bits in the bitmap of the route from source to destination is used as the primary reward function in route selection. A modified Dijkstra algorithm is developed for dynamic routing based on the bitmap representation. The algorithm uses bitwise logical operations and is quite efficient. A first-fit channel assignment algorithm is developed using a simple computation on the bitmap of the selected route. The resulting bitwise routing algorithm combines the benefits of least loaded routing algorithms and shortest path routing algorithms. Our extensive simulation tests have shown that the bitwise RWA approach has small storage overhead, is computationally fast, and reduces the network-wide blocking probability. The blocking performance of our RWA method compares very favorably with three routing methods: fixed alternate routing, shortest path using flooding, and Dijkstra’s algorithm using mathematical operations. Our simulation experiments have also evaluated the performance gain obtained when the network access stations are equipped with finite buffers to temporarily hold blocked connection requests. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Routing and Wavelength Assignment in Optical Networks Using Logical Link Representation and Efficient Bitwise Computation

Loading next page...
 
/lp/springer_journal/routing-and-wavelength-assignment-in-optical-networks-using-logical-2w4NTUOIVo
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2005 by Springer Science+Business Media, Inc.
Subject
Computer Science; Computer Communication Networks; Electrical Engineering; Characterization and Evaluation of Materials
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-005-3495-8
Publisher site
See Article on Publisher Site

Abstract

In this paper, we propose and evaluate a new approach for implementing efficient routing and wavelength assignment (RWA) in wavelength division multiplexing (WDM) optical networks. In our method, the state of a fiber is given by the set of free wavelengths in this fiber and is efficiently represented as a compact bitmap. The state of a multiple-fiber link is also represented by a compact bitmap computed as the logical union of the individual bitmaps of the fibers in this link. Likewise, the state of a lightpath is represented by a similar bitmap computed as the logical intersection of the individual bitmaps of the links in this path. The count of the number of 1-valued bits in the bitmap of the route from source to destination is used as the primary reward function in route selection. A modified Dijkstra algorithm is developed for dynamic routing based on the bitmap representation. The algorithm uses bitwise logical operations and is quite efficient. A first-fit channel assignment algorithm is developed using a simple computation on the bitmap of the selected route. The resulting bitwise routing algorithm combines the benefits of least loaded routing algorithms and shortest path routing algorithms. Our extensive simulation tests have shown that the bitwise RWA approach has small storage overhead, is computationally fast, and reduces the network-wide blocking probability. The blocking performance of our RWA method compares very favorably with three routing methods: fixed alternate routing, shortest path using flooding, and Dijkstra’s algorithm using mathematical operations. Our simulation experiments have also evaluated the performance gain obtained when the network access stations are equipped with finite buffers to temporarily hold blocked connection requests.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Mar 11, 2005

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off