Rotavirus assembly – interaction of surface protein VP7 with middle layer protein VP6

Rotavirus assembly – interaction of surface protein VP7 with middle layer protein VP6 The interaction between the rotavirus proteins viral protein 6 (VP6) and VP7 was examined in several exogenous protein expression systems. These proteins associated in the absence of other rotaviral proteins as demonstrated by a coimmunoprecipitation assay. Deletion analysis of VP7 indicated that truncations of either the mature amino or carboxyl terminus disrupted the proper folding of the protein and were not able to coimmunoprecipitate VP6. Truncation analysis of VP6 indicated that trimerization of VP6 was necessary, but not sufficient, for VP7 binding. MAb mapping and coimmunoprecipitation interference assays indicate that the VP6 amino acid residues between 271 and 342 are required for VP7 interaction. The interaction of VP6 and VP7 was also examined by the assembly of soluble VP7 onto baculovirus-expressed virus-like particles containing VP2 and VP6. Abrogation of this binding by preincubation of the particles with VP6 MAbs mapped to this same domain of VP6, validated our coimmunoprecipitation results. VP6 IgA MAbs that have been shown to be protective in vivo, but not a nonprotective IgA MAb, can interfere with VP7 binding to VP6. This suggests that these IgA MAbs may protect against rotavirus infection by blocking rotavirus assembly. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Rotavirus assembly – interaction of surface protein VP7 with middle layer protein VP6

Loading next page...
 
/lp/springer_journal/rotavirus-assembly-interaction-of-surface-protein-vp7-with-middle-JloD7TZoJ5
Publisher
Springer Journals
Copyright
Copyright © 2001 by Springer-Verlag/Wien
Subject
Legacy
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s007050170112
Publisher site
See Article on Publisher Site

Abstract

The interaction between the rotavirus proteins viral protein 6 (VP6) and VP7 was examined in several exogenous protein expression systems. These proteins associated in the absence of other rotaviral proteins as demonstrated by a coimmunoprecipitation assay. Deletion analysis of VP7 indicated that truncations of either the mature amino or carboxyl terminus disrupted the proper folding of the protein and were not able to coimmunoprecipitate VP6. Truncation analysis of VP6 indicated that trimerization of VP6 was necessary, but not sufficient, for VP7 binding. MAb mapping and coimmunoprecipitation interference assays indicate that the VP6 amino acid residues between 271 and 342 are required for VP7 interaction. The interaction of VP6 and VP7 was also examined by the assembly of soluble VP7 onto baculovirus-expressed virus-like particles containing VP2 and VP6. Abrogation of this binding by preincubation of the particles with VP6 MAbs mapped to this same domain of VP6, validated our coimmunoprecipitation results. VP6 IgA MAbs that have been shown to be protective in vivo, but not a nonprotective IgA MAb, can interfere with VP7 binding to VP6. This suggests that these IgA MAbs may protect against rotavirus infection by blocking rotavirus assembly.

Journal

Archives of VirologySpringer Journals

Published: Jun 1, 2001

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off