Rotational motion and lateral migration of an elliptical magnetic particle in a microchannel under a uniform magnetic field

Rotational motion and lateral migration of an elliptical magnetic particle in a microchannel... We have numerically investigated the motion of an elliptical magnetic particle in a microfluidic channel subjected to an external uniform magnetic field. By using the direct numerical simulation method and an arbitrary Lagrangian–Eulerian technique, the involved particle–fluid-magnetic field problem can be solved in a fully coupled manner. The numerical predictions of the particle trajectory and orientation with and without a uniform magnetic field are in qualitative agreement with the existing experimental results, and numerical results have revealed the impacts of key parameters such as inlet flow velocity, magnetic field direction, and particle shape on the rotational motion and lateral migration of the elliptical particle. Meanwhile, the shape-based particle separation in a low Reynolds number flow with the aid of an applied uniform magnetic field has also been numerically demonstrated. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Microfluids and Nanofluids Springer Journals

Rotational motion and lateral migration of an elliptical magnetic particle in a microchannel under a uniform magnetic field

Loading next page...
 
/lp/springer_journal/rotational-motion-and-lateral-migration-of-an-elliptical-magnetic-ACHBOQBreR
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany, part of Springer Nature
Subject
Engineering; Engineering Fluid Dynamics; Biomedical Engineering; Analytical Chemistry; Nanotechnology and Microengineering
ISSN
1613-4982
eISSN
1613-4990
D.O.I.
10.1007/s10404-017-2025-1
Publisher site
See Article on Publisher Site

Abstract

We have numerically investigated the motion of an elliptical magnetic particle in a microfluidic channel subjected to an external uniform magnetic field. By using the direct numerical simulation method and an arbitrary Lagrangian–Eulerian technique, the involved particle–fluid-magnetic field problem can be solved in a fully coupled manner. The numerical predictions of the particle trajectory and orientation with and without a uniform magnetic field are in qualitative agreement with the existing experimental results, and numerical results have revealed the impacts of key parameters such as inlet flow velocity, magnetic field direction, and particle shape on the rotational motion and lateral migration of the elliptical particle. Meanwhile, the shape-based particle separation in a low Reynolds number flow with the aid of an applied uniform magnetic field has also been numerically demonstrated.

Journal

Microfluids and NanofluidsSpringer Journals

Published: Dec 2, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off