Rotation of orbital currents in the trains of internal solitons in the ocean

Rotation of orbital currents in the trains of internal solitons in the ocean We analyze the results of measurements of currents in the trains of internal solitons on the New-York shelf of the Atlantic Ocean performed in the course of the Joint US/Russia Internal Wave Remote Sensing Experiment (JUSREX). It was discovered that the thermocline is characterized by an almost monotonic anticyclonic variation of the direction of orbital currents in the trains of solitons but the direction of waves in each train is practically constant. As a rule, the current significantly deviates to the left from the direction of waves in the leading soliton and approaches the indicated direction in the rear solitons of the train. The angular rotation current velocity corresponded to periods varying within the range 12–24h and, on the average, was close to the local inertial period. It is shown that this rotation cannot be caused by the distorting influence of advection of background shear currents but, most likely, is connected with the unknown properties of internal solitons in the rotating ocean. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Physical Oceanography Springer Journals

Rotation of orbital currents in the trains of internal solitons in the ocean

Loading next page...
 
/lp/springer_journal/rotation-of-orbital-currents-in-the-trains-of-internal-solitons-in-the-2lNocTAm0s
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2000 by VSP
Subject
Earth Sciences; Oceanography; Remote Sensing/Photogrammetry; Atmospheric Sciences; Climate Change; Environmental Physics
ISSN
0928-5105
eISSN
0928-5105
D.O.I.
10.1007/BF02519303
Publisher site
See Article on Publisher Site

Abstract

We analyze the results of measurements of currents in the trains of internal solitons on the New-York shelf of the Atlantic Ocean performed in the course of the Joint US/Russia Internal Wave Remote Sensing Experiment (JUSREX). It was discovered that the thermocline is characterized by an almost monotonic anticyclonic variation of the direction of orbital currents in the trains of solitons but the direction of waves in each train is practically constant. As a rule, the current significantly deviates to the left from the direction of waves in the leading soliton and approaches the indicated direction in the rear solitons of the train. The angular rotation current velocity corresponded to periods varying within the range 12–24h and, on the average, was close to the local inertial period. It is shown that this rotation cannot be caused by the distorting influence of advection of background shear currents but, most likely, is connected with the unknown properties of internal solitons in the rotating ocean.

Journal

Physical OceanographySpringer Journals

Published: Oct 17, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off