Root-specific expression of defensin in transgenic tobacco results in enhanced resistance against Phytophthora parasitica var. nicotianae

Root-specific expression of defensin in transgenic tobacco results in enhanced resistance against... Phytophthora species are soil-borne pathogens that damage plants in both agro- and natural ecosystems. To suppress the devastating pathogen, we generated a root-specific expression system using a specific promoter (pPRP3) conferring elevated expression of the target gene in roots that are very susceptible to soil-borne pathogens. To verify root-specific expression, we compared β-glucuronidase (GUS) expression driven by a constitutive or root-specific promoters in shoots and roots. In histochemical and fluorometric assays, GUS activity was detected in whole tobacco plants when GUS expression was driven by p35S, but was detected only in the roots by pPRP3. We then expressed a pepper defensin (J1–1) gene in tobacco to elucidate its effect on plant resistance. The accumulation of J1–1 was also tissue-specific in transgenic tobacco plants. Finally, transgenic plants carrying GUS or J1–1 genes in combination with p35S or pPRP3 were inoculated with Phytophthora parasitica var. nicotianae and Pythium aphanidermatum. Disease symptoms were significantly suppressed in transgenic plants that accumulated J1–1, regardless of the promoter used. Furthermore, the expression of PR genes was induced in J1–1 transgenic plants, exhibiting much higher levels in p35S-driven J1–1 plants than in pPRP3::J1–1 plants. These results demonstrated that J1–1 transgenic plants were primed for enhanced expression of PR genes, which provided synergistic effects with the defensin for disease resistance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png European Journal of Plant Pathology Springer Journals

Root-specific expression of defensin in transgenic tobacco results in enhanced resistance against Phytophthora parasitica var. nicotianae

Loading next page...
 
/lp/springer_journal/root-specific-expression-of-defensin-in-transgenic-tobacco-results-in-Zhd9AULZiq
Publisher
Springer Journals
Copyright
Copyright © 2018 by Koninklijke Nederlandse Planteziektenkundige Vereniging
Subject
Life Sciences; Plant Pathology; Plant Sciences; Ecology; Agriculture; Life Sciences, general
ISSN
0929-1873
eISSN
1573-8469
D.O.I.
10.1007/s10658-018-1419-6
Publisher site
See Article on Publisher Site

Abstract

Phytophthora species are soil-borne pathogens that damage plants in both agro- and natural ecosystems. To suppress the devastating pathogen, we generated a root-specific expression system using a specific promoter (pPRP3) conferring elevated expression of the target gene in roots that are very susceptible to soil-borne pathogens. To verify root-specific expression, we compared β-glucuronidase (GUS) expression driven by a constitutive or root-specific promoters in shoots and roots. In histochemical and fluorometric assays, GUS activity was detected in whole tobacco plants when GUS expression was driven by p35S, but was detected only in the roots by pPRP3. We then expressed a pepper defensin (J1–1) gene in tobacco to elucidate its effect on plant resistance. The accumulation of J1–1 was also tissue-specific in transgenic tobacco plants. Finally, transgenic plants carrying GUS or J1–1 genes in combination with p35S or pPRP3 were inoculated with Phytophthora parasitica var. nicotianae and Pythium aphanidermatum. Disease symptoms were significantly suppressed in transgenic plants that accumulated J1–1, regardless of the promoter used. Furthermore, the expression of PR genes was induced in J1–1 transgenic plants, exhibiting much higher levels in p35S-driven J1–1 plants than in pPRP3::J1–1 plants. These results demonstrated that J1–1 transgenic plants were primed for enhanced expression of PR genes, which provided synergistic effects with the defensin for disease resistance.

Journal

European Journal of Plant PathologySpringer Journals

Published: Feb 3, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off