Roles of reactive oxygen species in cell signaling pathways and immune responses to viral infections

Roles of reactive oxygen species in cell signaling pathways and immune responses to viral infections Several biological processes as well as infectious agents, physiological or environmental stress, and perturbed antioxidant response can promote oxidative stress. Oxidative stress usually happens when cells are exposed to more electrically charged reactive oxygen species (ROS) such as H2O2 or O2 −. ROS are well known for being both beneficial and deleterious. Recent studies have indicated that ROS are deleterious to cells, leading to programmed cell death (PCD) at high concentrations. At low concentrations, however, ROS can act as signaling molecules in a variety of cellular processes. In this review, we present an update of our current understanding of the role and regulation of reactive oxygen species in various viral infections, cellular signaling pathways and immune responses. We then discuss how the antioxidant defense system acts as an antiviral effector to limit cell damage. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Archives of Virology Springer Journals

Roles of reactive oxygen species in cell signaling pathways and immune responses to viral infections

Loading next page...
 
/lp/springer_journal/roles-of-reactive-oxygen-species-in-cell-signaling-pathways-and-immune-tAgPwvbT7O
Publisher
Springer Vienna
Copyright
Copyright © 2016 by Springer-Verlag Wien
Subject
Biomedicine; Virology; Medical Microbiology; Infectious Diseases
ISSN
0304-8608
eISSN
1432-8798
D.O.I.
10.1007/s00705-016-3130-2
Publisher site
See Article on Publisher Site

Abstract

Several biological processes as well as infectious agents, physiological or environmental stress, and perturbed antioxidant response can promote oxidative stress. Oxidative stress usually happens when cells are exposed to more electrically charged reactive oxygen species (ROS) such as H2O2 or O2 −. ROS are well known for being both beneficial and deleterious. Recent studies have indicated that ROS are deleterious to cells, leading to programmed cell death (PCD) at high concentrations. At low concentrations, however, ROS can act as signaling molecules in a variety of cellular processes. In this review, we present an update of our current understanding of the role and regulation of reactive oxygen species in various viral infections, cellular signaling pathways and immune responses. We then discuss how the antioxidant defense system acts as an antiviral effector to limit cell damage.

Journal

Archives of VirologySpringer Journals

Published: Nov 15, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off