Role of the expansin genes NtEXPA1 and NtEXPA4 in the regulation of cell extension during tobacco leaf growth

Role of the expansin genes NtEXPA1 and NtEXPA4 in the regulation of cell extension during tobacco... The tobacco plant genes NtEXPA1 and NtEXPA4 encode the α-expansin proteins involved in the regulation of cell growth and extension. We examined the levels of expression of these genes in various plant organs and under the effect of exogenous phytohormones. The highest level of NtEXPA1 expression were registered in the terminal bud and in the young growing leaves and flowers. NtEXPA1 expression ceased once the leaves stopped growing. The NtEXPA4 gene showed a similar expression profile, except for higher levels of mRNA in the leaves. In young leaves located near the terminal bud, high levels of NtEXPA1 and NtEXPA4 are induced by auxins. In the lower leaves, expansin expression is differentially regulated by brassinosteroids, which inhibit NtEXPA1 and upregulate NtEXPA4. We further showed that expression of the transgenic ARGOS-LIKE protein results in upregulation of NtEXPA1 and a reduction in the NtEXPA4 mRNA. In turn, overexpression of NtEXPA1 resulted in an increased size of the leaves and stems because of the larger size of the individual cells. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Role of the expansin genes NtEXPA1 and NtEXPA4 in the regulation of cell extension during tobacco leaf growth

Loading next page...
 
/lp/springer_journal/role-of-the-expansin-genes-ntexpa1-and-ntexpa4-in-the-regulation-of-iKFlF05gfA
Publisher
Pleiades Publishing
Copyright
Copyright © 2014 by Pleiades Publishing, Inc.
Subject
Biomedicine; Human Genetics; Animal Genetics and Genomics; Microbial Genetics and Genomics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795414040061
Publisher site
See Article on Publisher Site

Abstract

The tobacco plant genes NtEXPA1 and NtEXPA4 encode the α-expansin proteins involved in the regulation of cell growth and extension. We examined the levels of expression of these genes in various plant organs and under the effect of exogenous phytohormones. The highest level of NtEXPA1 expression were registered in the terminal bud and in the young growing leaves and flowers. NtEXPA1 expression ceased once the leaves stopped growing. The NtEXPA4 gene showed a similar expression profile, except for higher levels of mRNA in the leaves. In young leaves located near the terminal bud, high levels of NtEXPA1 and NtEXPA4 are induced by auxins. In the lower leaves, expansin expression is differentially regulated by brassinosteroids, which inhibit NtEXPA1 and upregulate NtEXPA4. We further showed that expression of the transgenic ARGOS-LIKE protein results in upregulation of NtEXPA1 and a reduction in the NtEXPA4 mRNA. In turn, overexpression of NtEXPA1 resulted in an increased size of the leaves and stems because of the larger size of the individual cells.

Journal

Russian Journal of GeneticsSpringer Journals

Published: May 30, 2014

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off