Role of PSII-L protein (psbL gene product) on the electron transfer in photosystem II complex. 1. Over-production of wild-type and mutant versions of PSII-L protein and reconstitution into the PSII core complex

Role of PSII-L protein (psbL gene product) on the electron transfer in photosystem II complex. 1.... To establish a system for over-production of PSII-L protein which is a component of photosystem II (PSII) complex, a plasmid designated as pMAL-psbL was constructed and expressed in Escherichia coli JM109. A fusion protein of PSII-L and maltose-binding proteins (53 kDa on SDS-PAGE) was accumulated in E. coli cells to a level of 10% of the total protein upon isopropyl-β-D-thiogalactopyranoside (IPTG) induction. The carboxyl-terminal part of 5.0 kDa was cleaved from the fusion protein and purified by an anion exchange column chromatography in the presence of detergents. This 5.0 kDa protein was identified as PSII-L by amino-terminal amino acid sequence analysis and the chromatographic behavior on an anion exchange gel. A few types of mutant PSII-L were also prepared by the essentially same procedure except for using plasmids which contain given mutations in psbL gene. Plastoquinone-9 (PQ-9) depleted PSII reaction center core complex consisting of D1, D2, CP47, cytochrome b-559 (cyt b-559), PSII-I and PSII-W was reconstituted with PQ-9 and digalactosyldiglyceride (DGDG) together with the wild-type or mutant PSII-L produced in E. coli or isolated PSII-L from spinach. Significant difference between the wild-type PSII-L proteins from E. coli and spinach was not recognized in the effectiveness to recover the photo-induced electron transfer activity in the resulting complexes. The analysis of stoichiometry of PQ-9 per reaction center in the PQ-9 reconstituted PS II revealed that two molecules of PQ-9 were reinserted into a reaction center independent of the presence or absence of PSII-L. These results suggest that PSII-L recovers the electron transfer activity in the reconstituted RC by a mechanism different from the stabilization of PQ-9 in the QA site of PSII. Ubiquinone-10 (UQ-10), but not plastoquinone-2 (PQ-2), substituted PQ-9 for recovering the PSII-L supported electron transfer activity in the reconstituted PSII reaction center complexes. The results obtained with the mutant PSII-L proteins revealed that the carboxyl terminal part rather than amino terminal part of PSII-L is crucial for recovering the electron transfer activity in the reconstituted complexes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Role of PSII-L protein (psbL gene product) on the electron transfer in photosystem II complex. 1. Over-production of wild-type and mutant versions of PSII-L protein and reconstitution into the PSII core complex

Loading next page...
 
/lp/springer_journal/role-of-psii-l-protein-psbl-gene-product-on-the-electron-transfer-in-S5u5149EcF
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1997 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1005800909495
Publisher site
See Article on Publisher Site

Abstract

To establish a system for over-production of PSII-L protein which is a component of photosystem II (PSII) complex, a plasmid designated as pMAL-psbL was constructed and expressed in Escherichia coli JM109. A fusion protein of PSII-L and maltose-binding proteins (53 kDa on SDS-PAGE) was accumulated in E. coli cells to a level of 10% of the total protein upon isopropyl-β-D-thiogalactopyranoside (IPTG) induction. The carboxyl-terminal part of 5.0 kDa was cleaved from the fusion protein and purified by an anion exchange column chromatography in the presence of detergents. This 5.0 kDa protein was identified as PSII-L by amino-terminal amino acid sequence analysis and the chromatographic behavior on an anion exchange gel. A few types of mutant PSII-L were also prepared by the essentially same procedure except for using plasmids which contain given mutations in psbL gene. Plastoquinone-9 (PQ-9) depleted PSII reaction center core complex consisting of D1, D2, CP47, cytochrome b-559 (cyt b-559), PSII-I and PSII-W was reconstituted with PQ-9 and digalactosyldiglyceride (DGDG) together with the wild-type or mutant PSII-L produced in E. coli or isolated PSII-L from spinach. Significant difference between the wild-type PSII-L proteins from E. coli and spinach was not recognized in the effectiveness to recover the photo-induced electron transfer activity in the resulting complexes. The analysis of stoichiometry of PQ-9 per reaction center in the PQ-9 reconstituted PS II revealed that two molecules of PQ-9 were reinserted into a reaction center independent of the presence or absence of PSII-L. These results suggest that PSII-L recovers the electron transfer activity in the reconstituted RC by a mechanism different from the stabilization of PQ-9 in the QA site of PSII. Ubiquinone-10 (UQ-10), but not plastoquinone-2 (PQ-2), substituted PQ-9 for recovering the PSII-L supported electron transfer activity in the reconstituted PSII reaction center complexes. The results obtained with the mutant PSII-L proteins revealed that the carboxyl terminal part rather than amino terminal part of PSII-L is crucial for recovering the electron transfer activity in the reconstituted complexes.

Journal

Plant Molecular BiologySpringer Journals

Published: Sep 29, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off