Role of organic acids in the formation of the ionic composition in developing glycophyte leaves

Role of organic acids in the formation of the ionic composition in developing glycophyte leaves The ionic composition in the leaves of some glycophyte plants (Phaseolus vulgaris L., Lycopersicon esculentum L., and Amaranthus cruentus L.) was studied during leaf development. Plants were grown in a stationary hydroponic culture; a growth medium contained equimolar concentrations of inorganic ions (NO 3 − , Cl−, SO 4 2− , H2PO 4 − , K+, Ca2+, Mg2+, and Na+) equal to 5 mg-equiv./l for each ion. In the juvenile leaf, the main ions were K+ and water-soluble anions of organic acids represented mainly by di-and tricarboxylic acids in kidney bean and tomato and oxalic acid in amaranth. An increase in the total amount of organic anions, coinciding with the accumulation of bivalent cations, was registered in leaves of glycophytes during their development. Mature and senescing leaves of tomato and kidney bean accumulated mainly di-and tricarboxylic acid salts with the prevalence of Ca2+ ions. In amaranth leaves, the formation of water-insoluble (acid-soluble) oxalate pool containing Ca2+ ions (mature leaves) or Ca2+ and Mg2+ ions (senescing leaves) was registered. The priority role of the metabolism of organic acids in the formation of the ionic composition of glycophyte leaves during their development is discussed. It is supposed that the species-specific ionic composition of glycophyte leaves at different developmental stages is due mainly to the pattern of carbon metabolism causing the accumulation either of di-and tricarboxylic acids or oxalic acid. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Role of organic acids in the formation of the ionic composition in developing glycophyte leaves

Loading next page...
 
/lp/springer_journal/role-of-organic-acids-in-the-formation-of-the-ionic-composition-in-gHwfKAM1zF
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2007 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443707030077
Publisher site
See Article on Publisher Site

Abstract

The ionic composition in the leaves of some glycophyte plants (Phaseolus vulgaris L., Lycopersicon esculentum L., and Amaranthus cruentus L.) was studied during leaf development. Plants were grown in a stationary hydroponic culture; a growth medium contained equimolar concentrations of inorganic ions (NO 3 − , Cl−, SO 4 2− , H2PO 4 − , K+, Ca2+, Mg2+, and Na+) equal to 5 mg-equiv./l for each ion. In the juvenile leaf, the main ions were K+ and water-soluble anions of organic acids represented mainly by di-and tricarboxylic acids in kidney bean and tomato and oxalic acid in amaranth. An increase in the total amount of organic anions, coinciding with the accumulation of bivalent cations, was registered in leaves of glycophytes during their development. Mature and senescing leaves of tomato and kidney bean accumulated mainly di-and tricarboxylic acid salts with the prevalence of Ca2+ ions. In amaranth leaves, the formation of water-insoluble (acid-soluble) oxalate pool containing Ca2+ ions (mature leaves) or Ca2+ and Mg2+ ions (senescing leaves) was registered. The priority role of the metabolism of organic acids in the formation of the ionic composition of glycophyte leaves during their development is discussed. It is supposed that the species-specific ionic composition of glycophyte leaves at different developmental stages is due mainly to the pattern of carbon metabolism causing the accumulation either of di-and tricarboxylic acids or oxalic acid.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: May 25, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off