Role of mechano-dependent cell movements in the establishment of spatial organization of axial rudiments in Xenopus laevis embryos

Role of mechano-dependent cell movements in the establishment of spatial organization of axial... Trajectories of individual cell movements and patterns of differentiation in the axial rudiments in suprablastoporal areas (SBA) in whole embryos of Xenopus laevis artificially stretched in the transverse direction up to 120–200% from the initial length at the early gastrula stage were mapped. We observed the impairment of anisotropic cell movements of longitudinal stretching and latero-medial convergence inherent for SBA. Axial rudiments occurred in all cases, but their location was completely impaired and dramatically different from the normal topology for moderate (120–140%) stretching. Stronger stretching caused a partial ordering of the whole axial complex and its reorientation toward stretching. We concluded that induction factors determine short-range order in their arrangement in SBA, whereas anisotropic cell movements in any direction are needed for long-range order. Moderate transverse stretching destroys normally oriented anisotropy, but it is not enough for establishment of the anisotropy oriented perpendicular to the normal. This explains the disorder at light stretching. The main conclusion of this study is that anisotropic tensions of embryonic tissues play role of long-range order parameters of cell differentiation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Developmental Biology Springer Journals

Role of mechano-dependent cell movements in the establishment of spatial organization of axial rudiments in Xenopus laevis embryos

Loading next page...
 
/lp/springer_journal/role-of-mechano-dependent-cell-movements-in-the-establishment-of-cRSGcb0lVu
Publisher
Pleiades Publishing
Copyright
Copyright © 2017 by Pleiades Publishing, Inc.
Subject
Life Sciences; Developmental Biology; Animal Anatomy / Morphology / Histology
ISSN
1062-3604
eISSN
1608-3326
D.O.I.
10.1134/S1062360417010039
Publisher site
See Article on Publisher Site

Abstract

Trajectories of individual cell movements and patterns of differentiation in the axial rudiments in suprablastoporal areas (SBA) in whole embryos of Xenopus laevis artificially stretched in the transverse direction up to 120–200% from the initial length at the early gastrula stage were mapped. We observed the impairment of anisotropic cell movements of longitudinal stretching and latero-medial convergence inherent for SBA. Axial rudiments occurred in all cases, but their location was completely impaired and dramatically different from the normal topology for moderate (120–140%) stretching. Stronger stretching caused a partial ordering of the whole axial complex and its reorientation toward stretching. We concluded that induction factors determine short-range order in their arrangement in SBA, whereas anisotropic cell movements in any direction are needed for long-range order. Moderate transverse stretching destroys normally oriented anisotropy, but it is not enough for establishment of the anisotropy oriented perpendicular to the normal. This explains the disorder at light stretching. The main conclusion of this study is that anisotropic tensions of embryonic tissues play role of long-range order parameters of cell differentiation.

Journal

Russian Journal of Developmental BiologySpringer Journals

Published: Feb 23, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off