Role of cyclosis in asymmetric formation of alkaline zones at the boundaries of illuminated region in Chara cells

Role of cyclosis in asymmetric formation of alkaline zones at the boundaries of illuminated... The role of cytoplasmic streaming in pattern formation at the plasma membrane and chloroplast layer was examined with Chara corallina Klein ex Willd. cells exposed to nonuniform illumination. Our hypothesis was that the exchange of ions and metabolites between the chloroplasts and the cytoplasm in the illuminated cell area alters the composition of the cytosol while the flow of modified cytoplasm induces asymmetrical changes in the plasmalemmal transport and fluorescence of chloroplasts in the adjacent shaded areas. The hypothesis was tested by measuring the H+-transporting activity of plasmalemma and non-photochemical quenching (NPQ) in shaded areas of Chara cells at distances of 1–5 mm on either side of the illuminated region (white light, 1000 μmol/(m2 s), beam width 2 mm). When measured at equal distances on opposite sides from the illuminated region, both pH and NPQ changes differed considerably depending on the direction of cytoplasmic movement at the light-shade boundary. In the region where the cytoplasm flowed out of irradiated area, the formation of alkaline zone (the plasma membrane domain with a high H+-conductance) and NPQ in chloroplasts was observed. In the vicinity of light-shade boundary where the flow was directed from the shade to the illuminated area, neither alkaline zone nor NPQ were formed. The results demonstrate the significance of cyclosis in the transfer of physiologically active intermediate that affects the membrane transport, the functional activity of chloroplasts, and the pattern formation in the plant cell. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

Role of cyclosis in asymmetric formation of alkaline zones at the boundaries of illuminated region in Chara cells

Loading next page...
 
/lp/springer_journal/role-of-cyclosis-in-asymmetric-formation-of-alkaline-zones-at-the-qX05E8IhaW
Publisher
SP MAIK Nauka/Interperiodica
Copyright
Copyright © 2011 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Sciences ; Plant Physiology
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443711020038
Publisher site
See Article on Publisher Site

Abstract

The role of cytoplasmic streaming in pattern formation at the plasma membrane and chloroplast layer was examined with Chara corallina Klein ex Willd. cells exposed to nonuniform illumination. Our hypothesis was that the exchange of ions and metabolites between the chloroplasts and the cytoplasm in the illuminated cell area alters the composition of the cytosol while the flow of modified cytoplasm induces asymmetrical changes in the plasmalemmal transport and fluorescence of chloroplasts in the adjacent shaded areas. The hypothesis was tested by measuring the H+-transporting activity of plasmalemma and non-photochemical quenching (NPQ) in shaded areas of Chara cells at distances of 1–5 mm on either side of the illuminated region (white light, 1000 μmol/(m2 s), beam width 2 mm). When measured at equal distances on opposite sides from the illuminated region, both pH and NPQ changes differed considerably depending on the direction of cytoplasmic movement at the light-shade boundary. In the region where the cytoplasm flowed out of irradiated area, the formation of alkaline zone (the plasma membrane domain with a high H+-conductance) and NPQ in chloroplasts was observed. In the vicinity of light-shade boundary where the flow was directed from the shade to the illuminated area, neither alkaline zone nor NPQ were formed. The results demonstrate the significance of cyclosis in the transfer of physiologically active intermediate that affects the membrane transport, the functional activity of chloroplasts, and the pattern formation in the plant cell.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Mar 12, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off