Role of cooperative cell movements and mechano-geometric constrains in patterning of axial rudiments in Xenopus laevis embryos

Role of cooperative cell movements and mechano-geometric constrains in patterning of axial... The role of cooperative cell movements has been explored in establishment of regular segregation of the marginal zone of Xenopus laevis embryos into the main axial rudiments: notochord, somites and neural tissue. For this purpose, the following operations were performed at the late blastula-early gastrula stages: (1) isolation of marginal zones, (2) addition of the ventral zone fragments to the marginal zones, (3) dissection of isolated marginal zones along either ventral (a) or dorsal (b) midlines, (4) immediate retransplantation of excised fragments of the suprablastoporal area to the same places without rotation or after 90° rotation, (5) Π-shaped separation of the suprablastoporal area either anteriorly or posteriorly. In experiments 1, 4, and 5, lateromedial convergent cell movements and differentiation of the axial rudiments were suppressed. In experiments 4 and 5, cell movements were reoriented ventrally, the entire embryo architecture was extensively reconstructed, and the axial rudiments were relocated to the blastopore lateral lips. In experiment 3, convergent cell movements were restored and oriented either towards the presumptive embryo midline (a), or in the perpendicular direction (b). In both cases, well developed axial rudiments elongated perpendicularly to cell convergences were formed. If the areas of axial rudiment formation were curved, mesodermal somites and neural tissue were always located on the convex (stretched) and concave (compressed) sides, respectively. We conclude that no stable prepatterning of the marginal zone takes place until at least the midgastrula stage. This prepatterning requires cooperative cell movements and associated mechano-geometric constrains. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Developmental Biology Springer Journals

Role of cooperative cell movements and mechano-geometric constrains in patterning of axial rudiments in Xenopus laevis embryos

Loading next page...
 
/lp/springer_journal/role-of-cooperative-cell-movements-and-mechano-geometric-constrains-in-b0wckxNPwK
Publisher
Nauka/Interperiodica
Copyright
Copyright © 2007 by Pleiades Publishing, Inc.
Subject
Life Sciences; Developmental Biology; Animal Anatomy / Morphology / Histology
ISSN
1062-3604
eISSN
1608-3326
D.O.I.
10.1134/S1062360407030034
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial