Role of constitutive and inducible repair in radiation resistance of Escherichia coli

Role of constitutive and inducible repair in radiation resistance of Escherichia coli Radiation resistance of Escherichia coli cells depends on how efficiently DNA is recovered after damage, which is determined by the function of constitutive and inducible repair branches. The effects of additional mutations of the key genes of constitutive and inducible repair (recA, lexA, recB, polA, lig, gyr, recF, recO, recR, recJ, recQ, uvrD, helD, recN, and ruv) on radiation resistance were studied in E. coli K-12 strain AB1157 and highly radiation-resistant isogenic strain Gamr444. An optimal balance ensuring a high γ resistance of the Gamr444 radiation-resistant E. coli mutant was due to expression of the key SOS repair genes (recA, lexA, recN, and ruv) and activation of the presynaptic functions of the RecF homologous recombination pathway as a result of a possible mutation of the uvrD gene, which codes for repair helicase II. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Genetics Springer Journals

Role of constitutive and inducible repair in radiation resistance of Escherichia coli

Loading next page...
 
/lp/springer_journal/role-of-constitutive-and-inducible-repair-in-radiation-resistance-of-ms2ImNHGfi
Publisher
Springer Journals
Copyright
Copyright © 2011 by Pleiades Publishing, Ltd.
Subject
Biomedicine; Human Genetics; Microbial Genetics and Genomics; Animal Genetics and Genomics
ISSN
1022-7954
eISSN
1608-3369
D.O.I.
10.1134/S1022795411070076
Publisher site
See Article on Publisher Site

Abstract

Radiation resistance of Escherichia coli cells depends on how efficiently DNA is recovered after damage, which is determined by the function of constitutive and inducible repair branches. The effects of additional mutations of the key genes of constitutive and inducible repair (recA, lexA, recB, polA, lig, gyr, recF, recO, recR, recJ, recQ, uvrD, helD, recN, and ruv) on radiation resistance were studied in E. coli K-12 strain AB1157 and highly radiation-resistant isogenic strain Gamr444. An optimal balance ensuring a high γ resistance of the Gamr444 radiation-resistant E. coli mutant was due to expression of the key SOS repair genes (recA, lexA, recN, and ruv) and activation of the presynaptic functions of the RecF homologous recombination pathway as a result of a possible mutation of the uvrD gene, which codes for repair helicase II.

Journal

Russian Journal of GeneticsSpringer Journals

Published: Jul 16, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off