Role of Collecting Duct Urea Transporters in the Kidney – Insights from Mouse Models

Role of Collecting Duct Urea Transporters in the Kidney – Insights from Mouse Models Urea movement across plasma membranes is modulated by specialized urea transporter proteins. These proteins are proposed to play key roles in the urinary concentrating mechanism and fluid homeostasis. To date, two urea-transporter genes have been cloned; UT-A (Slc14a2), encoding at least five proteins and UT-B (Slc14a1) encoding a single protein isoform. Recently we engineered mice that lack the inner medullary collecting duct (IMCD) urea transporters, UT-A1 and UT-A3 (UT-A1/3 −/− mice). This article includes 1) a historical review of the role of renal urea transporters in renal function; 2) a review of our studies utilizing the UT-A1/3 −/− mice; 3) description of an additional line of transgenic mice in which beta-galactosidase expression is driven by the alpha-promoter of the UT-A gene, which is allowing better physiological definition of control mechanisms for UT-A expression; and 4) a discussion of the implications of the studies in transgenic mice for the teaching of kidney physiology. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Role of Collecting Duct Urea Transporters in the Kidney – Insights from Mouse Models

Loading next page...
 
/lp/springer_journal/role-of-collecting-duct-urea-transporters-in-the-kidney-insights-from-AoLbEZdaHr
Publisher
Springer-Verlag
Copyright
Copyright © 2007 by Springer Science+Business Media, Inc.
Subject
Life Sciences; Human Physiology; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-006-0871-y
Publisher site
See Article on Publisher Site

Abstract

Urea movement across plasma membranes is modulated by specialized urea transporter proteins. These proteins are proposed to play key roles in the urinary concentrating mechanism and fluid homeostasis. To date, two urea-transporter genes have been cloned; UT-A (Slc14a2), encoding at least five proteins and UT-B (Slc14a1) encoding a single protein isoform. Recently we engineered mice that lack the inner medullary collecting duct (IMCD) urea transporters, UT-A1 and UT-A3 (UT-A1/3 −/− mice). This article includes 1) a historical review of the role of renal urea transporters in renal function; 2) a review of our studies utilizing the UT-A1/3 −/− mice; 3) description of an additional line of transgenic mice in which beta-galactosidase expression is driven by the alpha-promoter of the UT-A gene, which is allowing better physiological definition of control mechanisms for UT-A expression; and 4) a discussion of the implications of the studies in transgenic mice for the teaching of kidney physiology.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Jan 30, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off