Role of Cl− in Electrogenic H+ Secretion by Cortical Distal Tubule

Role of Cl− in Electrogenic H+ Secretion by Cortical Distal Tubule The presence of an electrogenic H+-ATPase has been described in the late distal tubule, a segment which contains intercalated cells. The present paper studies the electrogenicity of this transport mechanism, which has been demonstrated in turtle bladder and in cortical collecting duct. Transepithelial PD (V t ) was measured by means of Ling-Gerard microelectrodes in late distal tubule of rat renal cortex during in vivo microperfusion. The tubules were perfused with electrolyte solutions to which 2 × 10−7 m bafilomycin or 4.6 × 10−8 m concanamycin were added. No significant increase in lumen-negative V t upon perfusion with these inhibitors as compared to control, was observed as well as when 10−3 m amiloride, 10−5 m benzamil or 3 mm Ba2+ were perfused alone or in combination. The effect of an inhibition of electrogenic H+ secretion, i.e., increase in lumen-negative V t by 2–4 mV, was observed only when Cl− channels were blocked by 10−5 m 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB). This blocker also reduced the rate of bicarbonate reabsorption in this segment from 1.21 ± 0.14 (n= 8) to 0.62 ± 0.03 (8) nmol.cm−2.sec−1 as determined by stationary microperfusion and pH measurement by ion-exchange resin microelectrodes. These results indicate that: (i) the participation of the vacuolar H+ ATPase in the establishment of cortical late distal tubule V t is minor in physiological conditions, but can be demonstrated after blocking Cl− channels, thus suggesting a shunting effect of this anion; and, (ii) the rate of H+ secretion in this segment is reduced by a Cl− channel blocker, supporting coupling of H+-ATPase with Cl− transport. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Role of Cl− in Electrogenic H+ Secretion by Cortical Distal Tubule

Loading next page...
 
/lp/springer_journal/role-of-cl-in-electrogenic-h-secretion-by-cortical-distal-tubule-l7eAUSehn9
Publisher
Springer-Verlag
Copyright
Copyright © Inc. by 1997 Springer-Verlag New York
Subject
Life Sciences; Biochemistry, general; Human Physiology
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s002329900228
Publisher site
See Article on Publisher Site

Abstract

The presence of an electrogenic H+-ATPase has been described in the late distal tubule, a segment which contains intercalated cells. The present paper studies the electrogenicity of this transport mechanism, which has been demonstrated in turtle bladder and in cortical collecting duct. Transepithelial PD (V t ) was measured by means of Ling-Gerard microelectrodes in late distal tubule of rat renal cortex during in vivo microperfusion. The tubules were perfused with electrolyte solutions to which 2 × 10−7 m bafilomycin or 4.6 × 10−8 m concanamycin were added. No significant increase in lumen-negative V t upon perfusion with these inhibitors as compared to control, was observed as well as when 10−3 m amiloride, 10−5 m benzamil or 3 mm Ba2+ were perfused alone or in combination. The effect of an inhibition of electrogenic H+ secretion, i.e., increase in lumen-negative V t by 2–4 mV, was observed only when Cl− channels were blocked by 10−5 m 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB). This blocker also reduced the rate of bicarbonate reabsorption in this segment from 1.21 ± 0.14 (n= 8) to 0.62 ± 0.03 (8) nmol.cm−2.sec−1 as determined by stationary microperfusion and pH measurement by ion-exchange resin microelectrodes. These results indicate that: (i) the participation of the vacuolar H+ ATPase in the establishment of cortical late distal tubule V t is minor in physiological conditions, but can be demonstrated after blocking Cl− channels, thus suggesting a shunting effect of this anion; and, (ii) the rate of H+ secretion in this segment is reduced by a Cl− channel blocker, supporting coupling of H+-ATPase with Cl− transport.

Journal

The Journal of Membrane BiologySpringer Journals

Published: May 15, 1997

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off