Role of cation structure in the phytotoxicity of ionic liquids: growth inhibition and oxidative stress in spring barley and common radish

Role of cation structure in the phytotoxicity of ionic liquids: growth inhibition and oxidative... The present study determines the influence of three ionic liquids (ILs) containing cations with diversified structure on the growth and development of spring barley seedlings and common radish leaves. Increasing amounts of 1-butyl-1-methylpyrrolidinium hexafluorophosphate [Pyrrol][PF6], 1-butyl-1-methylpiperidinium hexafluorophosphate [Piper][PF6], and 1-butyl-4-methylpyridinium hexafluorophosphate [Pyrid][PF6] were added to the soil on which both plants were cultivated. The results of this studies showed that the applied ILs were highly toxic for plants, demonstrated by the inhibition of length of plant shoots and roots, decrease of fresh mass, and increase of dry weight content. Common radish turned out to be the plant with higher resistance to the used ILs. The differences in the cation structure did not influence phytotoxity of ILs for spring barley. Furthermore, all ILs led to a decrease of photosynthetic pigments, which was directly followed by decreased primary production in plants. Oxidative stress in plants occurred due to the presence of ILs in the soil, which was demonstrated by the increase of malondialdehyde (MDA) content, changes in the H2O2 level, and antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). The changes in the chlorophyll contents and the increase of POD activity turned out to be the most significant oxidative stress biomarkers in spring barley and common radish. Both spring barley and radish exposed to ILs accumulated a large amount of fluoride ion. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Science and Pollution Research Springer Journals

Role of cation structure in the phytotoxicity of ionic liquids: growth inhibition and oxidative stress in spring barley and common radish

Loading next page...
 
/lp/springer_journal/role-of-cation-structure-in-the-phytotoxicity-of-ionic-liquids-growth-PFoq6EOwRB
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by The Author(s)
Subject
Environment; Environment, general; Environmental Chemistry; Ecotoxicology; Environmental Health; Atmospheric Protection/Air Quality Control/Air Pollution; Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution
ISSN
0944-1344
eISSN
1614-7499
D.O.I.
10.1007/s11356-017-9439-x
Publisher site
See Article on Publisher Site

Abstract

The present study determines the influence of three ionic liquids (ILs) containing cations with diversified structure on the growth and development of spring barley seedlings and common radish leaves. Increasing amounts of 1-butyl-1-methylpyrrolidinium hexafluorophosphate [Pyrrol][PF6], 1-butyl-1-methylpiperidinium hexafluorophosphate [Piper][PF6], and 1-butyl-4-methylpyridinium hexafluorophosphate [Pyrid][PF6] were added to the soil on which both plants were cultivated. The results of this studies showed that the applied ILs were highly toxic for plants, demonstrated by the inhibition of length of plant shoots and roots, decrease of fresh mass, and increase of dry weight content. Common radish turned out to be the plant with higher resistance to the used ILs. The differences in the cation structure did not influence phytotoxity of ILs for spring barley. Furthermore, all ILs led to a decrease of photosynthetic pigments, which was directly followed by decreased primary production in plants. Oxidative stress in plants occurred due to the presence of ILs in the soil, which was demonstrated by the increase of malondialdehyde (MDA) content, changes in the H2O2 level, and antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). The changes in the chlorophyll contents and the increase of POD activity turned out to be the most significant oxidative stress biomarkers in spring barley and common radish. Both spring barley and radish exposed to ILs accumulated a large amount of fluoride ion.

Journal

Environmental Science and Pollution ResearchSpringer Journals

Published: Jun 22, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off