Role of Calcineurin-Mediated Dephosphorylation in Modulation of an Inwardly Rectifying K+ Channel in Human Proximal Tubule Cells

Role of Calcineurin-Mediated Dephosphorylation in Modulation of an Inwardly Rectifying K+ Channel... Activity of an inwardly rectifying K+ channel with inward conductance of about 40 pS in cultured human renal proximal tubule epithelial cells (RPTECs) is regulated at least in part by protein phosphorylation and dephosphorylation. In this study, we examined involvement of calcineurin (CaN), a Ca2+/calmodulin (CaM)–dependent phosphatase, in modulating K+ channel activity. In cell-attached mode of the patch-clamp technique, application of a CaN inhibitor, cyclosporin A (CsA, 5 μM) or FK520 (5 μM), significantly suppressed channel activity. Intracellular Ca2+ concentration ([Ca2+] i ) estimated by fura-2 imaging was elevated by these inhibitors. Since inhibition of CaN attenuates some dephosphorylation with increase in [Ca2+] i , we speculated that inhibiting CaN enhances Ca2+-dependent phosphorylation, which might result in channel suppression. To verify this hypothesis, we examined effects of inhibitors of PKC and Ca2+/CaM-dependent protein kinase-II (CaMKII) on CsA-induced channel suppression. Although the PKC inhibitor GF109203X (500 nM) did not influence the CsA-induced channel suppression, the CaMKII inhibitor KN62 (20 μM) prevented channel suppression, suggesting that the channel suppression resulted from CaMKII-dependent processes. Indeed, Western blot analysis showed that CsA increased phospho-CaMKII (Thr286), an activated CaMKII in inside–out patches, application of CaM (0.6 μM) and CaMKII (0.15 U/ml) to the bath at 10−6 M Ca2+ significantly suppressed channel activity, which was reactivated by subsequent application of CaN (800 U/ml). These results suggest that CaN plays an important role in supporting K+ channel activity in RPTECs by preventing CaMKII-dependent phosphorylation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Membrane Biology Springer Journals

Role of Calcineurin-Mediated Dephosphorylation in Modulation of an Inwardly Rectifying K+ Channel in Human Proximal Tubule Cells

Loading next page...
 
/lp/springer_journal/role-of-calcineurin-mediated-dephosphorylation-in-modulation-of-an-pGFpOND0kX
Publisher
Springer-Verlag
Copyright
Copyright © 2009 by Springer Science+Business Media, LLC
Subject
Life Sciences; Human Physiology ; Biochemistry, general
ISSN
0022-2631
eISSN
1432-1424
D.O.I.
10.1007/s00232-009-9207-z
Publisher site
See Article on Publisher Site

Abstract

Activity of an inwardly rectifying K+ channel with inward conductance of about 40 pS in cultured human renal proximal tubule epithelial cells (RPTECs) is regulated at least in part by protein phosphorylation and dephosphorylation. In this study, we examined involvement of calcineurin (CaN), a Ca2+/calmodulin (CaM)–dependent phosphatase, in modulating K+ channel activity. In cell-attached mode of the patch-clamp technique, application of a CaN inhibitor, cyclosporin A (CsA, 5 μM) or FK520 (5 μM), significantly suppressed channel activity. Intracellular Ca2+ concentration ([Ca2+] i ) estimated by fura-2 imaging was elevated by these inhibitors. Since inhibition of CaN attenuates some dephosphorylation with increase in [Ca2+] i , we speculated that inhibiting CaN enhances Ca2+-dependent phosphorylation, which might result in channel suppression. To verify this hypothesis, we examined effects of inhibitors of PKC and Ca2+/CaM-dependent protein kinase-II (CaMKII) on CsA-induced channel suppression. Although the PKC inhibitor GF109203X (500 nM) did not influence the CsA-induced channel suppression, the CaMKII inhibitor KN62 (20 μM) prevented channel suppression, suggesting that the channel suppression resulted from CaMKII-dependent processes. Indeed, Western blot analysis showed that CsA increased phospho-CaMKII (Thr286), an activated CaMKII in inside–out patches, application of CaM (0.6 μM) and CaMKII (0.15 U/ml) to the bath at 10−6 M Ca2+ significantly suppressed channel activity, which was reactivated by subsequent application of CaN (800 U/ml). These results suggest that CaN plays an important role in supporting K+ channel activity in RPTECs by preventing CaMKII-dependent phosphorylation.

Journal

The Journal of Membrane BiologySpringer Journals

Published: Oct 29, 2009

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off