Role of Arginine Residues on the S4 Segment of the Bacillus halodurans Na+ Channel in Voltage-sensing

Role of Arginine Residues on the S4 Segment of the Bacillus halodurans Na+ Channel in... The one-domain voltage-gated sodium channel of Bacillus halodurans (NaChBac) is composed of six transmembrane segments (S1–S6) comprising a pore-forming region flanked by segments S5 and S6 and a voltage-sensing element composed of segment S4. To investigate the role of the S4 segment in NaChBac channel activation, we used the cysteine mutagenesis approach where the positive charges of single and multiple arginine (R) residues of the S4 segment were replaced by the neutrally charged amino acid cysteine (C). To determine whether it was the arginine residue itself or its positive charge that was involved in channel activation, arginine to lysine (R to K) mutations were constructed. Wild-type (WT) and mutant NaChBac channels were expressed in tsA201 cells and Na+ currents were recorded using the whole-cell configuration of the patch-clamp technique. The current/voltage (I-V) and conductance/voltage (G-V) relationships steady-state inactivation (h ∞) and recovery from inactivation were evaluated to determine the effects of the S4 mutations on the biophysical properties of the NaChBac channel. R to C on the S4 segment resulted in a slowing of both activation and inactivation kinetics. Charge neutralization of arginine residues mostly resulted in a shift toward more positive potentials of G-V and h ∞ curves. The G-V curve shifts were associated with a decrease in slope, which may reflect a decrease in the gating charge involved in channel activation. Single neutralization of R114, R117, or R120 by C resulted in a very slow recovery from inactivation. Double neutralization of R111 and R129 confirmed the role of R111 in activation and suggested that R129 is most probably not part of the voltage sensor. Most of the R to K mutants retained WT-like current kinetics but exhibited an intermediate G-V curve, a steady-state inactivation shifted to more hyperpolarized potentials, and intermediate time constants of recovery from inactivation. This indicates that R, at several positions, plays an important role in channel activation. The data are consistent with the notion that the S4 is most probably the voltage sensor of the NaChBac channel and that both positive charges and the nature of the arginine residues are essential for channel activation. The Journal of Membrane Biology Springer Journals

Role of Arginine Residues on the S4 Segment of the Bacillus halodurans Na+ Channel in Voltage-sensing

Loading next page...
Copyright © 2004 by Springer Science+Business Media, Inc.
Life Sciences; Human Physiology; Biochemistry, general
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial