Role of alternative telomere lengthening unmasked in telomerase knock-out mutant plants

Role of alternative telomere lengthening unmasked in telomerase knock-out mutant plants Telomeres in many eukaryotes are maintained by telomerase in whose absence telomere shortening occurs. However, telomerase-deficient Arabidopsis thaliana mutants (Attert −/−) show extremely low rates of telomere shortening per plant generation (250–500 bp), which does not correspond to the expected outcome of replicative telomere shortening resulting from ca. 1,000 meristem cell divisions per seed-to-seed generation. To investigate the influence of the number of cell divisions per seed-to-seed generation, Attert −/− mutant plants were propagated from seeds coming either from the lower-most or the upper-most siliques (L- and U-plants) and the length of their telomeres were followed over several generations. The rate of telomere shortening was faster in U-plants, than in L-plants, as would be expected from their higher number of cell divisions per generation. However, this trend was observed only in telomeres whose initial length is relatively high and the differences decreased with progressive general telomere shortening over generations. But in generation 4, the L-plants frequently show a net telomere elongation, while the U-plants fail to do so. We propose that this is due to the activation of alternative telomere lengthening (ALT), a process which is activated in early embryonic development in both U- and L-plants, but is overridden in U-plants due to their higher number of cell divisions per generation. These data demonstrate what so far has only been speculated, that in the absence of telomerase, the number of cell divisions within one generation influences the control of telomere lengths. These results also reveal a fast and efficient activation of ALT mechanism(s) in response to the loss of telomerase activity and imply that ALT is probably involved also in normal plant development. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Role of alternative telomere lengthening unmasked in telomerase knock-out mutant plants

Loading next page...
 
/lp/springer_journal/role-of-alternative-telomere-lengthening-unmasked-in-telomerase-knock-ffid0JFp6x
Publisher
Springer Netherlands
Copyright
Copyright © 2008 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-008-9295-7
Publisher site
See Article on Publisher Site

Abstract

Telomeres in many eukaryotes are maintained by telomerase in whose absence telomere shortening occurs. However, telomerase-deficient Arabidopsis thaliana mutants (Attert −/−) show extremely low rates of telomere shortening per plant generation (250–500 bp), which does not correspond to the expected outcome of replicative telomere shortening resulting from ca. 1,000 meristem cell divisions per seed-to-seed generation. To investigate the influence of the number of cell divisions per seed-to-seed generation, Attert −/− mutant plants were propagated from seeds coming either from the lower-most or the upper-most siliques (L- and U-plants) and the length of their telomeres were followed over several generations. The rate of telomere shortening was faster in U-plants, than in L-plants, as would be expected from their higher number of cell divisions per generation. However, this trend was observed only in telomeres whose initial length is relatively high and the differences decreased with progressive general telomere shortening over generations. But in generation 4, the L-plants frequently show a net telomere elongation, while the U-plants fail to do so. We propose that this is due to the activation of alternative telomere lengthening (ALT), a process which is activated in early embryonic development in both U- and L-plants, but is overridden in U-plants due to their higher number of cell divisions per generation. These data demonstrate what so far has only been speculated, that in the absence of telomerase, the number of cell divisions within one generation influences the control of telomere lengths. These results also reveal a fast and efficient activation of ALT mechanism(s) in response to the loss of telomerase activity and imply that ALT is probably involved also in normal plant development.

Journal

Plant Molecular BiologySpringer Journals

Published: Feb 1, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off