Role of a novel pathogen-induced pepper C3–H–C4 type RING-finger protein gene, CaRFP1, in disease susceptibility and osmotic stress tolerance

Role of a novel pathogen-induced pepper C3–H–C4 type RING-finger protein gene, CaRFP1, in... Limited information is available about the roles of RING-finger proteins in plant defense. A pepper CaRFP1 encoding the C3-H-C4 type RING-finger protein that physically interacted with the basic PR-1 protein CABPR1 was isolated from pepper leaves infected by Xanthomonas campestris pv. vesicatoria. The CaRFP1 protein has VWFA domain, and N-terminal serine-rich and C-terminal cysteine-rich regions. The CaRFP1 transcripts accumulated earlier than did those of the basic PR-1 gene CABPR1 during the incompatible interaction of pepper leaves with X. campestris pv. vesicatoria, as well as in the systemic, uninoculated pepper leaf tissues. The CaRFP1 gene also was induced in pepper leaf tissues infected by Colletotrichum coccodes. The CaRFP1 gene was strongly induced much earlier by salicylic acid, ethylene and methyl jasmonate treatments, as well as environmental stresses including methyl viologen, mannitol and NaCl treatments. Overexpression of the CaRFP1 gene in the transgenic Arabidopsis plants conferred disease susceptibility to Pseudomonas syringae pv. tomato infection, accompanied by reduced PR-2 and PR-5 gene expression, suggesting that the CaRFP1 acts as an E3 ligase for polyubiquitination of target PR proteins. Exogenous salicylic acid treatment also abolished PR-2 and PR-5 gene expression in the transgenic plants. Differential osmotic stress tolerance was induced by high salt and drought in the CaRFP1-overexpressing plants during germination and seedling development, which was closely correlated with abscisic acid sensitivity of Arabidopsis plants. These results suggest that the CaRFP1 gene functions as an early defense regulator controlling bacterial disease susceptibility and osmotic stress tolerance. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Role of a novel pathogen-induced pepper C3–H–C4 type RING-finger protein gene, CaRFP1, in disease susceptibility and osmotic stress tolerance

Loading next page...
 
/lp/springer_journal/role-of-a-novel-pathogen-induced-pepper-c3-h-c4-type-ring-finger-soOwUKG7Xq
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2006 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-006-9110-2
Publisher site
See Article on Publisher Site

Abstract

Limited information is available about the roles of RING-finger proteins in plant defense. A pepper CaRFP1 encoding the C3-H-C4 type RING-finger protein that physically interacted with the basic PR-1 protein CABPR1 was isolated from pepper leaves infected by Xanthomonas campestris pv. vesicatoria. The CaRFP1 protein has VWFA domain, and N-terminal serine-rich and C-terminal cysteine-rich regions. The CaRFP1 transcripts accumulated earlier than did those of the basic PR-1 gene CABPR1 during the incompatible interaction of pepper leaves with X. campestris pv. vesicatoria, as well as in the systemic, uninoculated pepper leaf tissues. The CaRFP1 gene also was induced in pepper leaf tissues infected by Colletotrichum coccodes. The CaRFP1 gene was strongly induced much earlier by salicylic acid, ethylene and methyl jasmonate treatments, as well as environmental stresses including methyl viologen, mannitol and NaCl treatments. Overexpression of the CaRFP1 gene in the transgenic Arabidopsis plants conferred disease susceptibility to Pseudomonas syringae pv. tomato infection, accompanied by reduced PR-2 and PR-5 gene expression, suggesting that the CaRFP1 acts as an E3 ligase for polyubiquitination of target PR proteins. Exogenous salicylic acid treatment also abolished PR-2 and PR-5 gene expression in the transgenic plants. Differential osmotic stress tolerance was induced by high salt and drought in the CaRFP1-overexpressing plants during germination and seedling development, which was closely correlated with abscisic acid sensitivity of Arabidopsis plants. These results suggest that the CaRFP1 gene functions as an early defense regulator controlling bacterial disease susceptibility and osmotic stress tolerance.

Journal

Plant Molecular BiologySpringer Journals

Published: Dec 6, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off