Role of 5-aminolevulinic acid on growth, photosynthetic parameters and antioxidant enzyme activity in NaCl-stressed Isatis indigotica Fort.

Role of 5-aminolevulinic acid on growth, photosynthetic parameters and antioxidant enzyme... 5-aminolevulinic acid (ALA) is a key precursor for the biosynthesis of porphyrins such as heme and chlorophyll. ALA alleviates salinity stress damage in germinating seeds and improves seedling growth. Exogenous application of ALA at low concentrations has been shown to enhance salt tolerance in a number of plants. In the present study, we studied the effect of exogenous application of ALA on enhancing salt stress tolerance in Isatis indigotica Fort. (Anhui population as S1, Shanxi population as S2). A foliar application of 0, 12.5, 16.7, 25.0, and 50.0 mg/L ALA was given to the leaves of I. indigotica plants treated with 100 mmol/L NaCl. The fresh weight of leaves and roots; chlorophyll relative content (SPAD value); photosynthetic parameters, such as net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular carbon dioxide concentration (Ci) and water use efficiency of the treated plants were determined. The third leaf of each treated plant was used to determine the activities of antioxidant enzymes. Superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), glutamate synthase (GOGAT), nitrate reductase (NR) activities and the malondialdehyde (MDA) content increased in response to 100 mmol/L NaCl in both S1 and S2 plants. However, the fresh weight of leaf and root, chlorophyll relative content, Pn, Gs, Ci decreased in response to salt stress in both S1 and S2 plants. In all foliar application of ALA in S1 plants, the MDA content, and the activities of SOD and POD were the highest in response to 50.0 mg/L foliar application of ALA. GOGAT and NR activities were the highest in response to 16.7 mg/L foliar ALA. Chlorophyll content and Pn were the highest in S1 plants treated with by 25.0 mg/L ALA. In S2 plants, plant fresh weight, chlorophyll relative content, SOD, CAT, NR activities and Pn treated with 16.7 mg/L ALA were higher than that of the control (CK0). POD, MDA, GOGAT activities in S2 plants treated with 25.0 mg/L ALA were the highest among all treatments. Thus, our results showed that the optimal concentration of ALA (16.7 ~ 25.0 mmol/L) increases the activity of antioxidant enzymes, which in turn helps to abate the damage caused by salt stress in I. indigotica seedlings. Furthermore, ALA also results in an increase in chlorophyll content, Pn and the activities of GOGAT and NR. Russian Journal of Plant Physiology Springer Journals

Role of 5-aminolevulinic acid on growth, photosynthetic parameters and antioxidant enzyme activity in NaCl-stressed Isatis indigotica Fort.

Loading next page...
Pleiades Publishing
Copyright © 2017 by Pleiades Publishing, Ltd.
Life Sciences; Plant Physiology; Plant Sciences
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial