Rod-like particles matching algorithm based on SOM neural network in dispersed two-phase flow measurements

Rod-like particles matching algorithm based on SOM neural network in dispersed two-phase flow... A matching algorithm based on self-organizing map (SOM) neural network is proposed for tracking rod-like particles in 2D optical measurements of dispersed two-phase flows. It is verified by both synthetic images of elongated particles mimicking 2D suspension flows and direct numerical simulations-based results of prolate particles dispersed in a turbulent channel flow. Furthermore, the potential benefit of this algorithm is evaluated by applying it to the experimental data of rod-like fibers tracking in wall turbulence. The study of the behavior of elongated particles suspended in turbulent flows has a practical importance and covers a wide range of applications in engineering and science. In experimental approach, particle tracking velocimetry of the dispersed phase has a key role together with particle image velocimetry of the carrier phase to obtain the velocities of both phases. The essential parts of particle tracking are to identify and match corresponding particles correctly in consecutive images. The present study is focused on the development of an algorithm for pairing non-spherical particles that have one major symmetry axis. The novel idea in the algorithm is to take the orientation of the particles into account for matching in addition to their positions. The method used is based on the SOM neural network that finds the most likely matching link in images on the basis of feature extraction and clustering. The fundamental concept is finding corresponding particles in the images with the nearest characteristics: position and orientation. The most effective aspect of this two-frame matching algorithm is that it does not require any preliminary knowledge of neither the flow field nor the particle behavior. Furthermore, using one additional characteristic of the non-spherical particles, namely their orientation, in addition to its coordinate vector, the pairing is improved both for more reliable matching at higher concentrations of dispersed particles and for higher robustness against loss of particle pairs between image frames. Experiments in Fluids Springer Journals

Rod-like particles matching algorithm based on SOM neural network in dispersed two-phase flow measurements

Loading next page...
Springer Berlin Heidelberg
Copyright © 2014 by Springer-Verlag Berlin Heidelberg
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial