Robust trajectory tracking control of cable-driven parallel robots

Robust trajectory tracking control of cable-driven parallel robots In this paper, a robust tracking controller is designed for fully constrained cable-driven parallel robots (CDPRs). One of the main challenges of controller design for this type of robotic systems is that the cables should always be in tension, where this tension is generally generated through an actuator mechanism coupled with gearboxes. On the other hand, the presence of parametric and nonparametric modeling uncertainties is a common problem in designing a precise nonlinear tracking controller for these manipulators. To deal with these problems, in this paper two separate controllers are designed for the subsystems of the robot. First, an adaptive robust feedback controller with an adaptive feedforward term is designed for the dynamics of the CDPR, constituting the outer-loop dynamics. This controller is robust with respect to the modeling uncertainties of the system. Furthermore, the output of this controller is bounded, which guarantees a saturated desired input for the inner-loop dynamics. Next, a high-gain robust controller is developed for the inner-loop dynamics, which include the actuator–gearbox model. The stability of the overall system is analyzed through a theory of cascaded systems, and it is shown that the system is uniformly practically asymptotically stable. Finally, the effectiveness of the proposed control scheme is validated through simulations on a 4-cable planar robot in both nominal and perturbed conditions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nonlinear Dynamics Springer Journals

Robust trajectory tracking control of cable-driven parallel robots

Loading next page...
 
/lp/springer_journal/robust-trajectory-tracking-control-of-cable-driven-parallel-robots-H0jTSF2D7G
Publisher
Springer Netherlands
Copyright
Copyright © 2017 by Springer Science+Business Media B.V.
Subject
Engineering; Vibration, Dynamical Systems, Control; Classical Mechanics; Mechanical Engineering; Automotive Engineering
ISSN
0924-090X
eISSN
1573-269X
D.O.I.
10.1007/s11071-017-3624-9
Publisher site
See Article on Publisher Site

Abstract

In this paper, a robust tracking controller is designed for fully constrained cable-driven parallel robots (CDPRs). One of the main challenges of controller design for this type of robotic systems is that the cables should always be in tension, where this tension is generally generated through an actuator mechanism coupled with gearboxes. On the other hand, the presence of parametric and nonparametric modeling uncertainties is a common problem in designing a precise nonlinear tracking controller for these manipulators. To deal with these problems, in this paper two separate controllers are designed for the subsystems of the robot. First, an adaptive robust feedback controller with an adaptive feedforward term is designed for the dynamics of the CDPR, constituting the outer-loop dynamics. This controller is robust with respect to the modeling uncertainties of the system. Furthermore, the output of this controller is bounded, which guarantees a saturated desired input for the inner-loop dynamics. Next, a high-gain robust controller is developed for the inner-loop dynamics, which include the actuator–gearbox model. The stability of the overall system is analyzed through a theory of cascaded systems, and it is shown that the system is uniformly practically asymptotically stable. Finally, the effectiveness of the proposed control scheme is validated through simulations on a 4-cable planar robot in both nominal and perturbed conditions.

Journal

Nonlinear DynamicsSpringer Journals

Published: Jun 27, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off