Robust testing procedures of process locations

Robust testing procedures of process locations In many manufacturing and service industries, the quality department of the organization works continuously to ensure that the mean or location of the process is close to the target value. In order to understand the process, it is necessary to provide numerical statements of the processes that are being investigated. That is why the researcher needs to check the validity of the hypotheses that are concerned with some physical phenomena. It is usually assumed that the collected data behave well. However, sometimes the data may contain outliers. The presence of one or more outliers might seriously distort the statistical inference. Since the sample mean is very sensitive to outliers, this research will use the smooth adaptive (SA) estimator to estimate the population mean. The SA estimator will be used to construct testing procedures, called smooth adaptive test (SA test), for testing various null hypotheses. A Monte Carlo study is used to simulate the values of the probability of a Type I error and the power of the SA test. This is accomplished by constructing confidence intervals of the process mean by using the SA estimator and bootstrap methods. The SA test will be compared with other tests such as the normal test, t test and a nonparametric statistical method, namely, the Wilcoxon signed-rank test. Also, the cases with and without outliers will be considered. For the right-skewed distributions, the SA test is the best choice. When the population is a right-skewed distribution with one outlier, the SA test controls the probability of a Type I error better than other tests and is recommended. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quality & Quantity Springer Journals

Robust testing procedures of process locations

Loading next page...
 
/lp/springer_journal/robust-testing-procedures-of-process-locations-N6XozTn8L1
Publisher
Springer Journals
Copyright
Copyright © 2007 by Springer Science + Business Media B.V.
Subject
Social Sciences; Methodology of the Social Sciences; Social Sciences, general
ISSN
0033-5177
eISSN
1573-7845
D.O.I.
10.1007/s11135-006-9059-x
Publisher site
See Article on Publisher Site

Abstract

In many manufacturing and service industries, the quality department of the organization works continuously to ensure that the mean or location of the process is close to the target value. In order to understand the process, it is necessary to provide numerical statements of the processes that are being investigated. That is why the researcher needs to check the validity of the hypotheses that are concerned with some physical phenomena. It is usually assumed that the collected data behave well. However, sometimes the data may contain outliers. The presence of one or more outliers might seriously distort the statistical inference. Since the sample mean is very sensitive to outliers, this research will use the smooth adaptive (SA) estimator to estimate the population mean. The SA estimator will be used to construct testing procedures, called smooth adaptive test (SA test), for testing various null hypotheses. A Monte Carlo study is used to simulate the values of the probability of a Type I error and the power of the SA test. This is accomplished by constructing confidence intervals of the process mean by using the SA estimator and bootstrap methods. The SA test will be compared with other tests such as the normal test, t test and a nonparametric statistical method, namely, the Wilcoxon signed-rank test. Also, the cases with and without outliers will be considered. For the right-skewed distributions, the SA test is the best choice. When the population is a right-skewed distribution with one outlier, the SA test controls the probability of a Type I error better than other tests and is recommended.

Journal

Quality & QuantitySpringer Journals

Published: Jan 9, 2007

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off