Robust Plackett–Luce model for k-ary crowdsourced preferences

Robust Plackett–Luce model for k-ary crowdsourced preferences The aggregation of k-ary preferences is an emerging ranking problem, which plays an important role in several aspects of our daily life, such as ordinal peer grading and online product recommendation. At the same time, crowdsourcing has become a trendy way to provide a plethora of k-ary preferences for this ranking problem, due to convenient platforms and low costs. However, k-ary preferences from crowdsourced workers are often noisy, which inevitably degenerates the performance of traditional aggregation models. To address this challenge, in this paper, we present a RObust PlAckett–Luce (ROPAL) model. Specifically, to ensure the robustness, ROPAL integrates the Plackett–Luce model with a denoising vector. Based on the Kendall-tau distance, this vector corrects k-ary crowdsourced preferences with a certain probability. In addition, we propose an online Bayesian inference to make ROPAL scalable to large-scale preferences. We conduct comprehensive experiments on simulated and real-world datasets. Empirical results on “massive synthetic” and “real-world” datasets show that ROPAL with online Bayesian inference achieves substantial improvements in robustness and noisy worker detection over current approaches. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Machine Learning Springer Journals

Robust Plackett–Luce model for k-ary crowdsourced preferences

Loading next page...
 
/lp/springer_journal/robust-plackett-luce-model-for-k-ary-crowdsourced-preferences-6K1Xmokcyu
Publisher
Springer US
Copyright
Copyright © 2017 by The Author(s)
Subject
Computer Science; Artificial Intelligence (incl. Robotics); Control, Robotics, Mechatronics; Computing Methodologies; Simulation and Modeling; Language Translation and Linguistics
ISSN
0885-6125
eISSN
1573-0565
D.O.I.
10.1007/s10994-017-5674-0
Publisher site
See Article on Publisher Site

Abstract

The aggregation of k-ary preferences is an emerging ranking problem, which plays an important role in several aspects of our daily life, such as ordinal peer grading and online product recommendation. At the same time, crowdsourcing has become a trendy way to provide a plethora of k-ary preferences for this ranking problem, due to convenient platforms and low costs. However, k-ary preferences from crowdsourced workers are often noisy, which inevitably degenerates the performance of traditional aggregation models. To address this challenge, in this paper, we present a RObust PlAckett–Luce (ROPAL) model. Specifically, to ensure the robustness, ROPAL integrates the Plackett–Luce model with a denoising vector. Based on the Kendall-tau distance, this vector corrects k-ary crowdsourced preferences with a certain probability. In addition, we propose an online Bayesian inference to make ROPAL scalable to large-scale preferences. We conduct comprehensive experiments on simulated and real-world datasets. Empirical results on “massive synthetic” and “real-world” datasets show that ROPAL with online Bayesian inference achieves substantial improvements in robustness and noisy worker detection over current approaches.

Journal

Machine LearningSpringer Journals

Published: Oct 25, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off