Robust Plackett–Luce model for k-ary crowdsourced preferences

Robust Plackett–Luce model for k-ary crowdsourced preferences The aggregation of k-ary preferences is an emerging ranking problem, which plays an important role in several aspects of our daily life, such as ordinal peer grading and online product recommendation. At the same time, crowdsourcing has become a trendy way to provide a plethora of k-ary preferences for this ranking problem, due to convenient platforms and low costs. However, k-ary preferences from crowdsourced workers are often noisy, which inevitably degenerates the performance of traditional aggregation models. To address this challenge, in this paper, we present a RObust PlAckett–Luce (ROPAL) model. Specifically, to ensure the robustness, ROPAL integrates the Plackett–Luce model with a denoising vector. Based on the Kendall-tau distance, this vector corrects k-ary crowdsourced preferences with a certain probability. In addition, we propose an online Bayesian inference to make ROPAL scalable to large-scale preferences. We conduct comprehensive experiments on simulated and real-world datasets. Empirical results on “massive synthetic” and “real-world” datasets show that ROPAL with online Bayesian inference achieves substantial improvements in robustness and noisy worker detection over current approaches. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Machine Learning Springer Journals

Robust Plackett–Luce model for k-ary crowdsourced preferences

Loading next page...
 
/lp/springer_journal/robust-plackett-luce-model-for-k-ary-crowdsourced-preferences-6K1Xmokcyu
Publisher
Springer US
Copyright
Copyright © 2017 by The Author(s)
Subject
Computer Science; Artificial Intelligence (incl. Robotics); Control, Robotics, Mechatronics; Computing Methodologies; Simulation and Modeling; Language Translation and Linguistics
ISSN
0885-6125
eISSN
1573-0565
D.O.I.
10.1007/s10994-017-5674-0
Publisher site
See Article on Publisher Site

Abstract

The aggregation of k-ary preferences is an emerging ranking problem, which plays an important role in several aspects of our daily life, such as ordinal peer grading and online product recommendation. At the same time, crowdsourcing has become a trendy way to provide a plethora of k-ary preferences for this ranking problem, due to convenient platforms and low costs. However, k-ary preferences from crowdsourced workers are often noisy, which inevitably degenerates the performance of traditional aggregation models. To address this challenge, in this paper, we present a RObust PlAckett–Luce (ROPAL) model. Specifically, to ensure the robustness, ROPAL integrates the Plackett–Luce model with a denoising vector. Based on the Kendall-tau distance, this vector corrects k-ary crowdsourced preferences with a certain probability. In addition, we propose an online Bayesian inference to make ROPAL scalable to large-scale preferences. We conduct comprehensive experiments on simulated and real-world datasets. Empirical results on “massive synthetic” and “real-world” datasets show that ROPAL with online Bayesian inference achieves substantial improvements in robustness and noisy worker detection over current approaches.

Journal

Machine LearningSpringer Journals

Published: Oct 25, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial