Robust online monitoring of signal temporal logic

Robust online monitoring of signal temporal logic Signal temporal logic (STL) is a formalism used to rigorously specify requirements of cyberphysical systems (CPS), i.e., systems mixing digital or discrete components in interaction with a continuous environment or analog components. STL is naturally equipped with a quantitative semantics which can be used for various purposes: from assessing the robustness of a specification to guiding searches over the input and parameter space with the goal of falsifying the given property over system behaviors. Algorithms have been proposed and implemented for offline computation of such quantitative semantics, but only few methods exist for an online setting, where one would want to monitor the satisfaction of a formula during simulation. In this paper, we formalize a semantics for robust online monitoring of partial traces, i.e., traces for which there might not be enough data to decide the Boolean satisfaction (and to compute its quantitative counterpart). We propose an efficient algorithm to compute it and demonstrate its usage on two large scale real-world case studies coming from the automotive domain and from CPS education in a Massively Open Online Course setting. We show that savings in computationally expensive simulations far outweigh any overheads incurred by an online approach. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Formal Methods in System Design Springer Journals
Loading next page...
 
/lp/springer_journal/robust-online-monitoring-of-signal-temporal-logic-Ue2dLDLQzj
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Engineering; Circuits and Systems; Electrical Engineering; Computer-Aided Engineering (CAD, CAE) and Design; Software Engineering/Programming and Operating Systems
ISSN
0925-9856
eISSN
1572-8102
D.O.I.
10.1007/s10703-017-0286-7
Publisher site
See Article on Publisher Site

Abstract

Signal temporal logic (STL) is a formalism used to rigorously specify requirements of cyberphysical systems (CPS), i.e., systems mixing digital or discrete components in interaction with a continuous environment or analog components. STL is naturally equipped with a quantitative semantics which can be used for various purposes: from assessing the robustness of a specification to guiding searches over the input and parameter space with the goal of falsifying the given property over system behaviors. Algorithms have been proposed and implemented for offline computation of such quantitative semantics, but only few methods exist for an online setting, where one would want to monitor the satisfaction of a formula during simulation. In this paper, we formalize a semantics for robust online monitoring of partial traces, i.e., traces for which there might not be enough data to decide the Boolean satisfaction (and to compute its quantitative counterpart). We propose an efficient algorithm to compute it and demonstrate its usage on two large scale real-world case studies coming from the automotive domain and from CPS education in a Massively Open Online Course setting. We show that savings in computationally expensive simulations far outweigh any overheads incurred by an online approach.

Journal

Formal Methods in System DesignSpringer Journals

Published: Jul 27, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off