Robust $$l_{2,1}$$ l 2 , 1 Norm-Based Sparse Dictionary Coding Regularization of Homogenous and Heterogenous Graph Embeddings for Image Classifications

Robust $$l_{2,1}$$ l 2 , 1 Norm-Based Sparse Dictionary Coding Regularization of... In the field of manifold learning, Marginal Fisher Analysis (MFA), Discriminant Neighborhood Embedding (DNE) and Double Adjacency Graph-based DNE (DAG-DNE) construct the graph embedding for homogeneous and heterogeneous k-nearest neighbors (i.e. double adjacency) before feature extraction. All of them have two shortcomings: (1) vulnerable to noise; (2) the number of feature dimensions is fixed and likely very large. Taking advantage of the sparsity effect and de-noising property of sparse dictionary, we add the $$l_{2,1}$$ l 2 , 1 norm-based sparse dictionary coding regularization term to the graph embedding of double adjacency, to form an objective function, which seeks a small amount of significant dictionary atoms for feature extraction. Since our initial objective function cannot generate the closed-form solution, we construct an auxiliary function instead. Theoretically, the auxiliary function has closed-form solution w.r.t. dictionary atoms and sparse coding coefficients in each iterative step and its monotonously decreased value can pull down the initial objective function value. Extensive experiments on the synthetic dataset, the Yale face dataset, the UMIST face dataset and the terrain cover dataset demonstrate that our proposed algorithm has the ability of pushing the separability among heterogenous classes onto much fewer dimensions, and robust to noise. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neural Processing Letters Springer Journals

Robust $$l_{2,1}$$ l 2 , 1 Norm-Based Sparse Dictionary Coding Regularization of Homogenous and Heterogenous Graph Embeddings for Image Classifications

Loading next page...
 
/lp/springer_journal/robust-l-2-1-l-2-1-norm-based-sparse-dictionary-coding-regularization-Unqtgal8Xr
Publisher
Springer US
Copyright
Copyright © 2017 by Springer Science+Business Media, LLC
Subject
Computer Science; Artificial Intelligence (incl. Robotics); Complex Systems; Computational Intelligence
ISSN
1370-4621
eISSN
1573-773X
D.O.I.
10.1007/s11063-017-9691-6
Publisher site
See Article on Publisher Site

Abstract

In the field of manifold learning, Marginal Fisher Analysis (MFA), Discriminant Neighborhood Embedding (DNE) and Double Adjacency Graph-based DNE (DAG-DNE) construct the graph embedding for homogeneous and heterogeneous k-nearest neighbors (i.e. double adjacency) before feature extraction. All of them have two shortcomings: (1) vulnerable to noise; (2) the number of feature dimensions is fixed and likely very large. Taking advantage of the sparsity effect and de-noising property of sparse dictionary, we add the $$l_{2,1}$$ l 2 , 1 norm-based sparse dictionary coding regularization term to the graph embedding of double adjacency, to form an objective function, which seeks a small amount of significant dictionary atoms for feature extraction. Since our initial objective function cannot generate the closed-form solution, we construct an auxiliary function instead. Theoretically, the auxiliary function has closed-form solution w.r.t. dictionary atoms and sparse coding coefficients in each iterative step and its monotonously decreased value can pull down the initial objective function value. Extensive experiments on the synthetic dataset, the Yale face dataset, the UMIST face dataset and the terrain cover dataset demonstrate that our proposed algorithm has the ability of pushing the separability among heterogenous classes onto much fewer dimensions, and robust to noise.

Journal

Neural Processing LettersSpringer Journals

Published: Aug 16, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off