Robust Control for Two-Time-Scale Discrete Interval Systems

Robust Control for Two-Time-Scale Discrete Interval Systems The problem of designing robust controller for discrete two-time-scale interval systems, conveniently represented using interval matrix notion, is considered. The original full order two-time-scale interval system is decomposed into slow and fast subsystems using interval arithmetic. The controllers designed independently to stabilize these two subsystems are combined to get a composite controller which also stabilizes the original full order two-time-scale interval system. It is shown that a state and output feedback control law designed to stabilize the slow interval subsystem stabilizes the original full order system provided the fast interval subsystem is asymptotically stable. The proposed design procedure is illustrated using numerical examples for establishing the efficacy of the proposed method. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Reliable Computing Springer Journals

Robust Control for Two-Time-Scale Discrete Interval Systems

Loading next page...
 
/lp/springer_journal/robust-control-for-two-time-scale-discrete-interval-systems-VfbCLE1NhO
Publisher
Springer Journals
Copyright
Copyright © 2006 by Springer Science + Business Media, Inc.
Subject
Mathematics; Numeric Computing; Approximations and Expansions; Computational Mathematics and Numerical Analysis; Mathematical Modeling and Industrial Mathematics
ISSN
1385-3139
eISSN
1573-1340
D.O.I.
10.1007/s11155-006-2971-x
Publisher site
See Article on Publisher Site

Abstract

The problem of designing robust controller for discrete two-time-scale interval systems, conveniently represented using interval matrix notion, is considered. The original full order two-time-scale interval system is decomposed into slow and fast subsystems using interval arithmetic. The controllers designed independently to stabilize these two subsystems are combined to get a composite controller which also stabilizes the original full order two-time-scale interval system. It is shown that a state and output feedback control law designed to stabilize the slow interval subsystem stabilizes the original full order system provided the fast interval subsystem is asymptotically stable. The proposed design procedure is illustrated using numerical examples for establishing the efficacy of the proposed method.

Journal

Reliable ComputingSpringer Journals

Published: Jan 1, 2006

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off