# Robust and Efficient Ray Intersection of Implicit Surfaces

Robust and Efficient Ray Intersection of Implicit Surfaces The generation of ray traced images of a variety of surfaces plays a central role in computer graphics. One of the main operations in ray tracing is the calculation of intersections between rays and surfaces. In case of implicitly given surfaces the intersection problem can be formulated as that of finding the smallest non-negative root of an equation in one variable. If the root finding is carried out by means of conventional numerical methods based on point sampling (such as bisection, regula-falsi or Newton) the resulting image can be wrong, e.g. when the surface is thin the ray may "miss" the surface, which may result in an image with background color spots on the surface. To obtain robust intersection detection, methods based either on Lipschitz constants for the function and its derivative or an interval inclusions for the function and its derivative have been suggested. In this paper robust methods are obtained with interval inclusions in a variant of Alefeld-Hansens globally convergent method for computing and bounding all the roots of a single equation. Alefeld-Hansens method has been modified so instead of searching for all roots, a recursive depth-first search is carried out to obtain the smallest non-negative root. When compared to other methods suggested, it is found that this variant of Alefeld-Hansens method is not only robust but also an efficient method for finding the ray intersections. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Reliable Computing Springer Journals

# Robust and Efficient Ray Intersection of Implicit Surfaces

Reliable Computing, Volume 6 (1) – Oct 7, 2004
14 pages

/lp/springer_journal/robust-and-efficient-ray-intersection-of-implicit-surfaces-03Y6fIURRT
Publisher
Springer Journals
Subject
Mathematics; Numeric Computing; Approximations and Expansions; Computational Mathematics and Numerical Analysis; Mathematical Modeling and Industrial Mathematics
ISSN
1385-3139
eISSN
1573-1340
D.O.I.
10.1023/A:1009921806032
Publisher site
See Article on Publisher Site

### Abstract

The generation of ray traced images of a variety of surfaces plays a central role in computer graphics. One of the main operations in ray tracing is the calculation of intersections between rays and surfaces. In case of implicitly given surfaces the intersection problem can be formulated as that of finding the smallest non-negative root of an equation in one variable. If the root finding is carried out by means of conventional numerical methods based on point sampling (such as bisection, regula-falsi or Newton) the resulting image can be wrong, e.g. when the surface is thin the ray may "miss" the surface, which may result in an image with background color spots on the surface. To obtain robust intersection detection, methods based either on Lipschitz constants for the function and its derivative or an interval inclusions for the function and its derivative have been suggested. In this paper robust methods are obtained with interval inclusions in a variant of Alefeld-Hansens globally convergent method for computing and bounding all the roots of a single equation. Alefeld-Hansens method has been modified so instead of searching for all roots, a recursive depth-first search is carried out to obtain the smallest non-negative root. When compared to other methods suggested, it is found that this variant of Alefeld-Hansens method is not only robust but also an efficient method for finding the ray intersections.

### Journal

Reliable ComputingSpringer Journals

Published: Oct 7, 2004

## You’re reading a free preview. Subscribe to read the entire article.

### DeepDyve is your personal research library

It’s your single place to instantly
that matters to you.

over 18 million articles from more than
15,000 peer-reviewed journals.

All for just \$49/month

### Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

### Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

### Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

### Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

DeepDyve

DeepDyve

### Pro

Price

FREE

\$49/month
\$360/year

Save searches from
PubMed

Create lists to

Export lists, citations