Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

Robotic technique improves entry point alignment for intramedullary nailing of femur fractures compared to the conventional technique: a cadaveric study

Robotic technique improves entry point alignment for intramedullary nailing of femur fractures... We aimed to test whether a robotic technique would offer more accurate access to the proximal femoral medullary cavity for insertion of an intramedullary nail compared to the conventional manual technique. The medullary cavity of ten femur specimens was accessed in a conventional fashion using fluoroscopic control. In ten additional femur specimens, ISO-C 3D scans were obtained and a computer program calculated the ideal location of the cavity opening based on the trajectory of the medullary canal. In both techniques, the surgeon opened the cavity using a drill and inserted a radiopaque tube that matched the diameter of the cavity. The mean difference in angle between the proximal opening and the medullary canal in the shaft of the femur was calculated for both groups. Robotic cavity opening was more accurate than the manual technique, with a mean difference in trajectory between the proximal opening and the shaft canal of 2.0° (95% CI 0.6°–3.5°) compared to a mean difference of 4.3° (95% CI 2.11°–6.48°) using the manual technique (P = 0.0218). The robotic technique was more accurate than the manual procedure for identifying the optimal location for opening the medullary canal for insertion of an intramedullary nail. Additional advantages may include a reduction in total radiation exposure, as only one ISO-C 3D scan is needed, as opposed to multiple radiographs when using the manual technique. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Robotic Surgery Springer Journals

Robotic technique improves entry point alignment for intramedullary nailing of femur fractures compared to the conventional technique: a cadaveric study

Loading next page...
 
/lp/springer_journal/robotic-technique-improves-entry-point-alignment-for-intramedullary-6BXYxzdM0C
Publisher
Springer Journals
Copyright
Copyright © 2017 by Springer-Verlag London Ltd.
Subject
Medicine & Public Health; Minimally Invasive Surgery; Surgery; Urology
ISSN
1863-2483
eISSN
1863-2491
DOI
10.1007/s11701-017-0735-8
pmid
28801793
Publisher site
See Article on Publisher Site

Abstract

We aimed to test whether a robotic technique would offer more accurate access to the proximal femoral medullary cavity for insertion of an intramedullary nail compared to the conventional manual technique. The medullary cavity of ten femur specimens was accessed in a conventional fashion using fluoroscopic control. In ten additional femur specimens, ISO-C 3D scans were obtained and a computer program calculated the ideal location of the cavity opening based on the trajectory of the medullary canal. In both techniques, the surgeon opened the cavity using a drill and inserted a radiopaque tube that matched the diameter of the cavity. The mean difference in angle between the proximal opening and the medullary canal in the shaft of the femur was calculated for both groups. Robotic cavity opening was more accurate than the manual technique, with a mean difference in trajectory between the proximal opening and the shaft canal of 2.0° (95% CI 0.6°–3.5°) compared to a mean difference of 4.3° (95% CI 2.11°–6.48°) using the manual technique (P = 0.0218). The robotic technique was more accurate than the manual procedure for identifying the optimal location for opening the medullary canal for insertion of an intramedullary nail. Additional advantages may include a reduction in total radiation exposure, as only one ISO-C 3D scan is needed, as opposed to multiple radiographs when using the manual technique.

Journal

Journal of Robotic SurgerySpringer Journals

Published: Aug 11, 2017

References