Robotic sensing and object recognition from thermal-mapped point clouds

Robotic sensing and object recognition from thermal-mapped point clouds Many of the civil structures are more than half way through or nearing their intended service life; frequently assessing and maintaining structural integrity is a top maintenance priority. Robotic inspection technologies using ground and aerial robots with 3D scanning and imaging capabilities have the potential to improve safety and efficiency of infrastructure management. To provide more valuable information to inspectors and agency decision makers, automatic environment sensing and semantic information extraction are fundamental issues in this field. This paper introduces an innovative method for generating thermal-mapped point clouds of a robot’s work environment and performing automatic object recognition with the aid of thermal data fused to 3D point clouds. The laser scanned point cloud and thermal data were collected using a custom-designed mobile robot. The multimodal data was combined with a data fusion process based on texture mapping. The automatic object recognition was performed by two processes: segmentation with thermal data and classification with scanned geometric features. The proposed method was validated with the scan data collected in an entire building floor. Experimental results show that the thermal integrated object recognition approach achieved better performance than a geometry only-based approach, with an average recognition accuracy of 93%, precision of 83%, and recall rate of 86% for objects in the tested environment including humans, display monitors and light fixtures. International Journal of Intelligent Robotics and Applications Springer Journals

Robotic sensing and object recognition from thermal-mapped point clouds

Loading next page...
Springer Singapore
Copyright © 2017 by Springer Singapore
Computer Science; Artificial Intelligence (incl. Robotics); Control, Robotics, Mechatronics; User Interfaces and Human Computer Interaction; Manufacturing, Machines, Tools; Electronics and Microelectronics, Instrumentation
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial