Roadheader performance prediction using genetic programming (GP) and gene expression programming (GEP) techniques

Roadheader performance prediction using genetic programming (GP) and gene expression programming... Roadheading machines play a vital role in excavation operation in tunneling and mining industries notably when selective mining is required. Roadheaders are more effective in soft to medium rock formations due to a higher cutting rate in such strata. A precise prediction of machine’s performance is a crucial issue, as it has considerable effects on excavation planning, project’s cost estimation, machine specification selection as well as safety of the project. In this research, a database of machine performance and some geomechanical parameters of rock formations from Tabas coal mine project, the largest and fully mechanized coal mine in Iran, has been established, including instantaneous cutting rate (ICR), uniaxial compressive strength, Brazilian tensile strength, rock quality designation, influence of discontinuity orientation (Alpha angle) and specific energy. Afterward, the parameters were analyzed through genetic programming (GP) and gene expression programming (GEP) approaches to yield more accurate models to predict the performance of roadheaders. As statistical indices, coefficient of determination, root mean square error and variance account were used to evaluate the efficiency of the developed models. According to the obtained results, it was observed that developed models can effectively be implemented for prediction of roadheader performance. Moreover, it was concluded that performance of the GEP model is better than the GP model. A high conformity was observed between predicted and measured roadheader ICR for GEP model. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Earth Sciences Springer Journals

Roadheader performance prediction using genetic programming (GP) and gene expression programming (GEP) techniques

Loading next page...
 
/lp/springer_journal/roadheader-performance-prediction-using-genetic-programming-gp-and-BC8uaUbf65
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Earth Sciences; Geology; Hydrology/Water Resources; Geochemistry; Environmental Science and Engineering; Terrestrial Pollution; Biogeosciences
ISSN
1866-6280
eISSN
1866-6299
D.O.I.
10.1007/s12665-017-6920-2
Publisher site
See Article on Publisher Site

Abstract

Roadheading machines play a vital role in excavation operation in tunneling and mining industries notably when selective mining is required. Roadheaders are more effective in soft to medium rock formations due to a higher cutting rate in such strata. A precise prediction of machine’s performance is a crucial issue, as it has considerable effects on excavation planning, project’s cost estimation, machine specification selection as well as safety of the project. In this research, a database of machine performance and some geomechanical parameters of rock formations from Tabas coal mine project, the largest and fully mechanized coal mine in Iran, has been established, including instantaneous cutting rate (ICR), uniaxial compressive strength, Brazilian tensile strength, rock quality designation, influence of discontinuity orientation (Alpha angle) and specific energy. Afterward, the parameters were analyzed through genetic programming (GP) and gene expression programming (GEP) approaches to yield more accurate models to predict the performance of roadheaders. As statistical indices, coefficient of determination, root mean square error and variance account were used to evaluate the efficiency of the developed models. According to the obtained results, it was observed that developed models can effectively be implemented for prediction of roadheader performance. Moreover, it was concluded that performance of the GEP model is better than the GP model. A high conformity was observed between predicted and measured roadheader ICR for GEP model.

Journal

Environmental Earth SciencesSpringer Journals

Published: Aug 23, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off