RNAi silencing of three homologues of S-adenosylmethionine decarboxylase gene in tapetal tissue of tomato results in male sterility

RNAi silencing of three homologues of S-adenosylmethionine decarboxylase gene in tapetal tissue... Polyamines play very important role in various cellular metabolic functions, including floral induction, floral differentiation and fertility regulation. In the present study, S-adenosylmethionine decarboxylase (SAMDC), a key gene involved in polyamine biosynthesis, has been targeted in tapetal tissue of tomato using RNAi to examine its effect on tapetum development and pollen viability. The target SAMDC gene fragments of three homologues were cloned in a hairpin RNA construct under the control of tapetal-specific A9 promoter, which was used to generate several RNAi tomato plants. These RNAi lines expressed the intended small interfering RNAs in the anther and showed the aborted and sterile pollen exhibiting shrunken and distorted morphology. These RNAi tomato plants having sterile pollen, failed to set fruits but female fertility of the plants remained unaffected as cross pollination resulted in fruit setting. Expression profiling of SAMDC genes showed considerable decrease in transcripts of SAMDC1 (5–8 fold) and SAMDC2 and SAMDC3 (2–3 fold) in the anthers of RNAi plants. The other polyamine biosynthesis genes, ADC and SPDSYN exhibited ~1.5 fold decrease in their transcript levels. Presence of siRNA molecules specific to SAMDC homologues in anther and tapetal-specific activity of A9 promoter as shown with GUS reporter system of RNAi plants suggested down-regulation of the target genes in tapetum by RNAi. These observations indicate the importance of SAMDC, in turn polyamines in pollen development, and thus tapetum-specific down-regulation of SAMDC genes using RNAi can be used for developing male sterile plants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

RNAi silencing of three homologues of S-adenosylmethionine decarboxylase gene in tapetal tissue of tomato results in male sterility

Loading next page...
Springer Netherlands
Copyright © 2013 by Springer Science+Business Media Dordrecht
Life Sciences; Plant Sciences; Biochemistry, general; Plant Pathology
Publisher site
See Article on Publisher Site


  • Polyamine accumulation and near-loss of morphogenesis in long-term callus cultures of rice: restoration of plant regeneration by manipulation of cellular polyamine levels
    Bajaj, S; Rajam, MV
  • Flower development schedule in tomato Lycopersicon esculentum cv. sweet cherry
    Brukhin, V; Hernould, M; Gonzalez, N; Mouras, CCA

You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial