RNA-Seq analysis reveals genetic bases of the flowering process in oriental hybrid lily cv. Sorbonne

RNA-Seq analysis reveals genetic bases of the flowering process in oriental hybrid lily cv. Sorbonne Flowering is a critical step in plant reproduction. Oriental lily (Lilium) characterized by showy flowers is increasingly used; however, the blossom period is an important limiting factor influencing the value of lily. Improving the flowering of lily by molecular breeding technology has limitless applications, but the mechanism of the regulation of lily flowering remains to be studied. Transcriptomes providing comprehensive sequence profiling data of transcription variation during flowering process in Oriental hybrids lily Sorbonne were assembled from RNA-Seq data. Approximately 124.16 million 90 bp paired-end clean reads were assembled into 66 327 unigenes and compared with the UniProt databases. There are 30 254 unigenes that have significant hits to the sequences in the UniProt database, 60 738, 16 601, and 12 494 unigenes have similarity to the GO, KEGG, and COG databases, respectively. By analyzing dynamic changes in the transcriptome of lily flowering based on our RNA sequencing (RNA-Seq) data, some genes involved in floral induction were found, which revealed the complicated flower regulation network at the transcriptome level during lily flowering. Moreover, 12 DEGs related to flowering including LoLFY, LoMAF, LoFT, LoAG, LoCBF, LoAGL6a, LoSOC1, LoSEP1, LoNAC1, LoAPX, LoARF10, and LoICE were identified with real-time quantitative RT-PCR analysis. The results suggested that the flower of Oriental lily possessed a high proportion of flowering genes active at different stages of flowering. According to the results of the present study, we predicted that they would play an important role during flowering process; these data provided the foundation for future studies of metabolism during flowering of Oriental lily. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

RNA-Seq analysis reveals genetic bases of the flowering process in oriental hybrid lily cv. Sorbonne

Loading next page...
 
/lp/springer_journal/rna-seq-analysis-reveals-genetic-bases-of-the-flowering-process-in-p7B0NJ6dS1
Publisher
Pleiades Publishing
Copyright
Copyright © 2014 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443714060132
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial