RNA-Seq analysis of differentially expressed genes in rice under photooxidation

RNA-Seq analysis of differentially expressed genes in rice under photooxidation Efficient photosynthesis is critical for plant survival and growth. When plant-absorbed light exceeds the overall rate of energy conversion, it will trigger photooxidation. In this study, we selected a photooxidation mutant 812HS, it was isolated from the progeny of japonica rice (Oryza sativa L.) 812S and shows leaf yellowing and hypersensitive to photooxidation. Chloroplast ultrastructure in the leaves of 812HS showed that photooxidation resulted in significant chloroplast damage compared with 812S for changes in gene expressions in response to photooxidation stress using next-generation sequencing technologies on an Illumina HiSeq 2000 platform. A total of 88508 and 88495 genes were identified from 812S and 812HS, respectively. Expressions of 1199 genes were significantly upregulated, while 1342 genes were remarkably downregulated in 812HS. These genes were notably enriched in the 21 KEGG pathways. Based on their expression patterns, several key pathways were identified to be involved in the photooxidation of 812HS. qRT-PCR analysis further confirmed the results of RNA-Seq. This study enabled us to integrate analysis of RNA-Seq in rice and offered a deeper insight into the molecular mechanisms in response to photo-oxidative stress and provided clues for further critical gene identification in the protective mechanisms against photooxidation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Russian Journal of Plant Physiology Springer Journals

RNA-Seq analysis of differentially expressed genes in rice under photooxidation

Loading next page...
 
/lp/springer_journal/rna-seq-analysis-of-differentially-expressed-genes-in-rice-under-9feow5VB6v
Publisher
Pleiades Publishing
Copyright
Copyright © 2017 by Pleiades Publishing, Ltd.
Subject
Life Sciences; Plant Physiology; Plant Sciences
ISSN
1021-4437
eISSN
1608-3407
D.O.I.
10.1134/S1021443717050065
Publisher site
See Article on Publisher Site

Abstract

Efficient photosynthesis is critical for plant survival and growth. When plant-absorbed light exceeds the overall rate of energy conversion, it will trigger photooxidation. In this study, we selected a photooxidation mutant 812HS, it was isolated from the progeny of japonica rice (Oryza sativa L.) 812S and shows leaf yellowing and hypersensitive to photooxidation. Chloroplast ultrastructure in the leaves of 812HS showed that photooxidation resulted in significant chloroplast damage compared with 812S for changes in gene expressions in response to photooxidation stress using next-generation sequencing technologies on an Illumina HiSeq 2000 platform. A total of 88508 and 88495 genes were identified from 812S and 812HS, respectively. Expressions of 1199 genes were significantly upregulated, while 1342 genes were remarkably downregulated in 812HS. These genes were notably enriched in the 21 KEGG pathways. Based on their expression patterns, several key pathways were identified to be involved in the photooxidation of 812HS. qRT-PCR analysis further confirmed the results of RNA-Seq. This study enabled us to integrate analysis of RNA-Seq in rice and offered a deeper insight into the molecular mechanisms in response to photo-oxidative stress and provided clues for further critical gene identification in the protective mechanisms against photooxidation.

Journal

Russian Journal of Plant PhysiologySpringer Journals

Published: Aug 20, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off