RNA-Seq analysis and de novo transcriptome assembly of Hevea brasiliensis

RNA-Seq analysis and de novo transcriptome assembly of Hevea brasiliensis Hevea brasiliensis, being the only source of commercial natural rubber, is an extremely economically important crop. In an effort to facilitate biological, biochemical and molecular research in rubber biosynthesis, here we report the use of next-generation massively parallel sequencing technologies and de novo transcriptome assembly to gain a comprehensive overview of the H. brasiliensis transcriptome. The sequencing output generated more than 12 million reads with an average length of 90 nt. In total 48,768 unigenes (mean size = 436 bp, median size = 328 bp) were assembled through de novo transcriptome assembly. Out of 13,807 H. brasiliensis cDNA sequences deposited in Genbank of the National Center for Biotechnology Information (NCBI) (as of Feb 2011), 11,746 sequences (84.5%) could be matched with the assembled unigenes through nucleotide BLAST. The assembled sequences were annotated with gene descriptions, Gene Ontology (GO) and Clusters of Orthologous Group (COG) terms. In all, 37,432 unigenes were successfully annotated, of which 24,545 (65.5%) aligned to Ricinus communis proteins. Furthermore, the annotated uingenes were functionally classified according to the GO, COG and Kyoto Encyclopedia of Genes and Genomes databases. Our data provides the most comprehensive sequence resource available for the study of rubber trees as well as demonstrates effective use of Illumina sequencing and de novo transcriptome assembly in a species lacking genomic information. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

RNA-Seq analysis and de novo transcriptome assembly of Hevea brasiliensis

Loading next page...
 
/lp/springer_journal/rna-seq-analysis-and-de-novo-transcriptome-assembly-of-hevea-Nv39KVsqMV
Publisher
Springer Journals
Copyright
Copyright © 2011 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-011-9811-z
Publisher site
See Article on Publisher Site

Abstract

Hevea brasiliensis, being the only source of commercial natural rubber, is an extremely economically important crop. In an effort to facilitate biological, biochemical and molecular research in rubber biosynthesis, here we report the use of next-generation massively parallel sequencing technologies and de novo transcriptome assembly to gain a comprehensive overview of the H. brasiliensis transcriptome. The sequencing output generated more than 12 million reads with an average length of 90 nt. In total 48,768 unigenes (mean size = 436 bp, median size = 328 bp) were assembled through de novo transcriptome assembly. Out of 13,807 H. brasiliensis cDNA sequences deposited in Genbank of the National Center for Biotechnology Information (NCBI) (as of Feb 2011), 11,746 sequences (84.5%) could be matched with the assembled unigenes through nucleotide BLAST. The assembled sequences were annotated with gene descriptions, Gene Ontology (GO) and Clusters of Orthologous Group (COG) terms. In all, 37,432 unigenes were successfully annotated, of which 24,545 (65.5%) aligned to Ricinus communis proteins. Furthermore, the annotated uingenes were functionally classified according to the GO, COG and Kyoto Encyclopedia of Genes and Genomes databases. Our data provides the most comprehensive sequence resource available for the study of rubber trees as well as demonstrates effective use of Illumina sequencing and de novo transcriptome assembly in a species lacking genomic information.

Journal

Plant Molecular BiologySpringer Journals

Published: Aug 3, 2011

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off