RNA processing alters open reading frame stoichiometry from the large ATP synthase gene cluster of spinach chloroplasts

RNA processing alters open reading frame stoichiometry from the large ATP synthase gene cluster... The large ATP synthase gene cluster of spinach chloroplasts is a multigenic cluster that encodes the small ribosomal subunit 2 followed by four ATP synthase subunits. The stoichiometry of the ATP synthase gene products from this cluster changes markedly between transcription and assembly of the complex. The two primary transcripts from this gene cluster undergo a complex series of RNA processing steps. Here we show that the extensive RNA processing that the large ATP synthase gene cluster transcripts undergo results in a substantial change in the stoichiometry of complete open reading frames (ORFs) of the four ATP synthase genes. Processing directly affects the stoichiometry of open reading frames from this gene cluster by intragenic cleavage. It may also affect open reading frame stoichiometry more indirectly, but equally significantly, by cleavage-induced alteration of stability of some of the processed transcripts relative to the others. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

RNA processing alters open reading frame stoichiometry from the large ATP synthase gene cluster of spinach chloroplasts

Loading next page...
 
/lp/springer_journal/rna-processing-alters-open-reading-frame-stoichiometry-from-the-large-YBWUm8151V
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1997 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1005780404444
Publisher site
See Article on Publisher Site

Abstract

The large ATP synthase gene cluster of spinach chloroplasts is a multigenic cluster that encodes the small ribosomal subunit 2 followed by four ATP synthase subunits. The stoichiometry of the ATP synthase gene products from this cluster changes markedly between transcription and assembly of the complex. The two primary transcripts from this gene cluster undergo a complex series of RNA processing steps. Here we show that the extensive RNA processing that the large ATP synthase gene cluster transcripts undergo results in a substantial change in the stoichiometry of complete open reading frames (ORFs) of the four ATP synthase genes. Processing directly affects the stoichiometry of open reading frames from this gene cluster by intragenic cleavage. It may also affect open reading frame stoichiometry more indirectly, but equally significantly, by cleavage-induced alteration of stability of some of the processed transcripts relative to the others.

Journal

Plant Molecular BiologySpringer Journals

Published: Sep 29, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off