Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 14-Day Trial for You or Your Team.

Learn More →

RNA interference-mediated gene knockdown within specific cell types

RNA interference-mediated gene knockdown within specific cell types In plants, RNA interference (RNAi)-induced gene silencing can spread from the initiation site to nearby cells. The silencing signal moves from cell-to-cell through plasmodesmata and, over long distances, through the phloem. In this study, we employed a nuclear-localized GFP fusion protein to visualize the pattern of gene silencing induced by three different transgenes expressing double-stranded RNA (dsRNA) in Arabidopsis root tips. In all cases, we found that dsRNA-induced silencing did not spread from the silencing initiation site to adjacent cells. In the first set of experiments, in a transgenic background expressing nuclear-localized GFP within a contiguous cell layer that included endodermis, cortex/endodermis (joint) initial (CEI) cells and the quiescent center (QC) cells, expression of the marker gene was silenced specifically in the QC cells without affecting gene expression in the adjacent CEI and endodermal cells. The next two sets of experiments examined the knockdown of two endogenous genes. We observed that silencing was completely restricted to the QC and endodermal cells within which the dsRNA transgenes were expressed. Overall, these results accentuate one important aspect of RNAi-induced gene silencing, that it can be cell autonomous, and demonstrated the feasibility of selective gene knockdown within specific cell types. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

RNA interference-mediated gene knockdown within specific cell types

Plant Molecular Biology , Volume 80 (2) – Jun 28, 2012

Loading next page...
1
 
/lp/springer_journal/rna-interference-mediated-gene-knockdown-within-specific-cell-types-zi9Ijhjfkq

References (28)

Publisher
Springer Journals
Copyright
Copyright © 2012 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
DOI
10.1007/s11103-012-9937-7
pmid
22740284
Publisher site
See Article on Publisher Site

Abstract

In plants, RNA interference (RNAi)-induced gene silencing can spread from the initiation site to nearby cells. The silencing signal moves from cell-to-cell through plasmodesmata and, over long distances, through the phloem. In this study, we employed a nuclear-localized GFP fusion protein to visualize the pattern of gene silencing induced by three different transgenes expressing double-stranded RNA (dsRNA) in Arabidopsis root tips. In all cases, we found that dsRNA-induced silencing did not spread from the silencing initiation site to adjacent cells. In the first set of experiments, in a transgenic background expressing nuclear-localized GFP within a contiguous cell layer that included endodermis, cortex/endodermis (joint) initial (CEI) cells and the quiescent center (QC) cells, expression of the marker gene was silenced specifically in the QC cells without affecting gene expression in the adjacent CEI and endodermal cells. The next two sets of experiments examined the knockdown of two endogenous genes. We observed that silencing was completely restricted to the QC and endodermal cells within which the dsRNA transgenes were expressed. Overall, these results accentuate one important aspect of RNAi-induced gene silencing, that it can be cell autonomous, and demonstrated the feasibility of selective gene knockdown within specific cell types.

Journal

Plant Molecular BiologySpringer Journals

Published: Jun 28, 2012

There are no references for this article.