RNA interference-mediated gene knockdown within specific cell types

RNA interference-mediated gene knockdown within specific cell types In plants, RNA interference (RNAi)-induced gene silencing can spread from the initiation site to nearby cells. The silencing signal moves from cell-to-cell through plasmodesmata and, over long distances, through the phloem. In this study, we employed a nuclear-localized GFP fusion protein to visualize the pattern of gene silencing induced by three different transgenes expressing double-stranded RNA (dsRNA) in Arabidopsis root tips. In all cases, we found that dsRNA-induced silencing did not spread from the silencing initiation site to adjacent cells. In the first set of experiments, in a transgenic background expressing nuclear-localized GFP within a contiguous cell layer that included endodermis, cortex/endodermis (joint) initial (CEI) cells and the quiescent center (QC) cells, expression of the marker gene was silenced specifically in the QC cells without affecting gene expression in the adjacent CEI and endodermal cells. The next two sets of experiments examined the knockdown of two endogenous genes. We observed that silencing was completely restricted to the QC and endodermal cells within which the dsRNA transgenes were expressed. Overall, these results accentuate one important aspect of RNAi-induced gene silencing, that it can be cell autonomous, and demonstrated the feasibility of selective gene knockdown within specific cell types. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

RNA interference-mediated gene knockdown within specific cell types

Loading next page...
 
/lp/springer_journal/rna-interference-mediated-gene-knockdown-within-specific-cell-types-zi9Ijhjfkq
Publisher
Springer Journals
Copyright
Copyright © 2012 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-012-9937-7
Publisher site
See Article on Publisher Site

Abstract

In plants, RNA interference (RNAi)-induced gene silencing can spread from the initiation site to nearby cells. The silencing signal moves from cell-to-cell through plasmodesmata and, over long distances, through the phloem. In this study, we employed a nuclear-localized GFP fusion protein to visualize the pattern of gene silencing induced by three different transgenes expressing double-stranded RNA (dsRNA) in Arabidopsis root tips. In all cases, we found that dsRNA-induced silencing did not spread from the silencing initiation site to adjacent cells. In the first set of experiments, in a transgenic background expressing nuclear-localized GFP within a contiguous cell layer that included endodermis, cortex/endodermis (joint) initial (CEI) cells and the quiescent center (QC) cells, expression of the marker gene was silenced specifically in the QC cells without affecting gene expression in the adjacent CEI and endodermal cells. The next two sets of experiments examined the knockdown of two endogenous genes. We observed that silencing was completely restricted to the QC and endodermal cells within which the dsRNA transgenes were expressed. Overall, these results accentuate one important aspect of RNAi-induced gene silencing, that it can be cell autonomous, and demonstrated the feasibility of selective gene knockdown within specific cell types.

Journal

Plant Molecular BiologySpringer Journals

Published: Jun 28, 2012

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off