Rna editing in gymnosperms and its impact on the evolution of the mitochondrial coxI gene

Rna editing in gymnosperms and its impact on the evolution of the mitochondrial coxI gene Sequence analysis of the mitochondrial coxI gene in eight gymnosperm species revealed a high rate of non-synonymous nucleotide substitutions with a strong (98%) predominance of C-T substitutions. Further analysis of the corresponding coxI cDNA sequences showed that all the non-synonymous C-T changes in the coxI genomic DNA sequences were eliminated by RNA editing resulting in nearly identical mRNA (amino acid) sequences among the species. Pronounced variation in the number and location of edited sites was found among species. Most species had a relatively large number of edited sites (from 25 to 34). However, no RNA editing of the coxI sequence was found in Gingko biloba or Larix sibirica. The sequence composition of the investigated coxI fragment suggests that the coxI gene in G. biloba and L. sibirica originated from edited mitochondrial coxI transcripts by reverse transcription followed by insertion into the nuclear genome or back into the mitochondrial genome. Our results also demonstrate that where there are a large number of edited sites, RNA editing can accelerate the divergence of nucleotide sequences among species. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Rna editing in gymnosperms and its impact on the evolution of the mitochondrial coxI gene

Loading next page...
 
/lp/springer_journal/rna-editing-in-gymnosperms-and-its-impact-on-the-evolution-of-the-ohV0Qv61LF
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 1998 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1005972513322
Publisher site
See Article on Publisher Site

Abstract

Sequence analysis of the mitochondrial coxI gene in eight gymnosperm species revealed a high rate of non-synonymous nucleotide substitutions with a strong (98%) predominance of C-T substitutions. Further analysis of the corresponding coxI cDNA sequences showed that all the non-synonymous C-T changes in the coxI genomic DNA sequences were eliminated by RNA editing resulting in nearly identical mRNA (amino acid) sequences among the species. Pronounced variation in the number and location of edited sites was found among species. Most species had a relatively large number of edited sites (from 25 to 34). However, no RNA editing of the coxI sequence was found in Gingko biloba or Larix sibirica. The sequence composition of the investigated coxI fragment suggests that the coxI gene in G. biloba and L. sibirica originated from edited mitochondrial coxI transcripts by reverse transcription followed by insertion into the nuclear genome or back into the mitochondrial genome. Our results also demonstrate that where there are a large number of edited sites, RNA editing can accelerate the divergence of nucleotide sequences among species.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 6, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off