RNA-directed DNA methylation

RNA-directed DNA methylation RNA-DNA interactions can serve as a signal that triggers de novo DNA methylation in plants. As yet, this RNA-directed DNA methylation mechanism merely targets transgenes, but it appears likely that methylation of some endogenous sequences is also directed by RNA. RNA-directed methylation of cytosine residues specifically occurs along the DNA regions that are complementary to the directing RNA pointing to the formation of a putative RNA-DNA duplex. Dense methylation patterns and the methylation of cytosine residues at symmetric and asymmetric sites are detectable on both DNA strands within these regions. Methylation progressively decreases in the sequences adjacent to the putative RNA-DNA duplex. The extreme sensitivity of RNA-directed DNA methylation was demonstrated by analysing a short 30 bp DNA region that was complementary to the targeting RNA. Association of RNA-directed DNA methylation with homology-dependent gene silencing indicated that the methylation-directing RNA molecules may be double-stranded or may contain double-stranded regions. Whereas the function of DNA methylation in transcriptional gene silencing is nearly understood, its role in post-transcriptional gene silencing is still under discussion. In mammals, X-chromosome inactivation and genomic imprinting are associated with DNA methylation but how methylation is initiated is unclear. The observation of a correlation between specific antisense RNAs and transcriptional and post-transcriptional gene silencing may indicate that RNA-directed DNA methylation is involved in epigenetic gene regulation throughout eukaryotes. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

RNA-directed DNA methylation

Loading next page...
 
/lp/springer_journal/rna-directed-dna-methylation-soxtr7bNc2
Publisher
Kluwer Academic Publishers
Copyright
Copyright © 2000 by Kluwer Academic Publishers
Subject
Life Sciences; Biochemistry, general; Plant Sciences; Plant Pathology
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1023/A:1006479327881
Publisher site
See Article on Publisher Site

Abstract

RNA-DNA interactions can serve as a signal that triggers de novo DNA methylation in plants. As yet, this RNA-directed DNA methylation mechanism merely targets transgenes, but it appears likely that methylation of some endogenous sequences is also directed by RNA. RNA-directed methylation of cytosine residues specifically occurs along the DNA regions that are complementary to the directing RNA pointing to the formation of a putative RNA-DNA duplex. Dense methylation patterns and the methylation of cytosine residues at symmetric and asymmetric sites are detectable on both DNA strands within these regions. Methylation progressively decreases in the sequences adjacent to the putative RNA-DNA duplex. The extreme sensitivity of RNA-directed DNA methylation was demonstrated by analysing a short 30 bp DNA region that was complementary to the targeting RNA. Association of RNA-directed DNA methylation with homology-dependent gene silencing indicated that the methylation-directing RNA molecules may be double-stranded or may contain double-stranded regions. Whereas the function of DNA methylation in transcriptional gene silencing is nearly understood, its role in post-transcriptional gene silencing is still under discussion. In mammals, X-chromosome inactivation and genomic imprinting are associated with DNA methylation but how methylation is initiated is unclear. The observation of a correlation between specific antisense RNAs and transcriptional and post-transcriptional gene silencing may indicate that RNA-directed DNA methylation is involved in epigenetic gene regulation throughout eukaryotes.

Journal

Plant Molecular BiologySpringer Journals

Published: Oct 16, 2004

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off