Ring–mesh topology design in a SONET–WDM network

Ring–mesh topology design in a SONET–WDM network This article deals with a ring–mesh network design problem arising from the deployment of an optical transport network. The problem seeks to partition the set of demand pairs to a number of rings and a mesh cluster, and to determine the location of the optical cross-connect system (OXC), while minimizing the total cost of optical add-drop multiplexers (OADMs), OXCs, and fiber links. We formulate this problem as a zero-one integer programming problem. In strengthening the formulation, we develop some valid inequalities for the zero-one quadratic (knapsack) polytope and a column generation formulation that eliminates the symmetry of ring configurations. Also, we prescribe an effective tabu search procedure for finding a good quality feasible solution, which is also used as a starting column for the column generation procedure. Computational results show that the proposed solution procedure provides tight lower and upper bounds within a reasonable time bound. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Photonic Network Communications Springer Journals

Ring–mesh topology design in a SONET–WDM network

Loading next page...
 
/lp/springer_journal/ring-mesh-topology-design-in-a-sonet-wdm-network-kfOCmsfIlf
Publisher
Springer US
Copyright
Copyright © 2010 by Springer Science+Business Media, LLC
Subject
Computer Science; Characterization and Evaluation of Materials; Electrical Engineering; Computer Communication Networks
ISSN
1387-974X
eISSN
1572-8188
D.O.I.
10.1007/s11107-010-0244-4
Publisher site
See Article on Publisher Site

Abstract

This article deals with a ring–mesh network design problem arising from the deployment of an optical transport network. The problem seeks to partition the set of demand pairs to a number of rings and a mesh cluster, and to determine the location of the optical cross-connect system (OXC), while minimizing the total cost of optical add-drop multiplexers (OADMs), OXCs, and fiber links. We formulate this problem as a zero-one integer programming problem. In strengthening the formulation, we develop some valid inequalities for the zero-one quadratic (knapsack) polytope and a column generation formulation that eliminates the symmetry of ring configurations. Also, we prescribe an effective tabu search procedure for finding a good quality feasible solution, which is also used as a starting column for the column generation procedure. Computational results show that the proposed solution procedure provides tight lower and upper bounds within a reasonable time bound.

Journal

Photonic Network CommunicationsSpringer Journals

Published: Feb 19, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off