Rice DREB1B promoter shows distinct stress-specific responses, and the overexpression of cDNA in tobacco confers improved abiotic and biotic stress tolerance

Rice DREB1B promoter shows distinct stress-specific responses, and the overexpression of cDNA in... CBF/DREB (C-repeat binding factor/dehydration responsive element binding factor) family of transcription factors in plants is reported to be associated with regulation of gene expression under stress conditions. Here, we report the functional characterization of a DREB transcription factor, DREB1B gene from rice (Oryza sativa ssp. indica). The OsDREB1B gene was differentially regulated at the transcriptional level by osmotic stress, oxidative stress, salicylic acid, ABA, and cold. A 745 bp promoter region of OsDREB1B cDNA was fused to the β-glucuronidase (GUS) gene and introduced via Agrobacterium tumifaciens into the genome of Arabidopsis. Histochemical analysis of GUS expression in T2 transgenic Arabidopsis plants indicated that OsDREB1B shows stress-specific induction pattern in response to a variety of stresses like mannitol, NaCl, PEG, methyl viologen, cold, ABA, and salicylic acid. Leaf-order-dependent induction pattern of the promoter was observed in response to both cold and ABA stresses. Further, OsDREB1B cDNA was introduced into tobacco plants under the control of CaMV35S promoter to investigate the role of DREB1B product in plant stress response. Transgenic tobacco plants have shown improved seed germination, root growth, membrane stability, and 2, 2-diphenyl-1-pycrilhydrazil hydrate (DPPH) free radical scavenging activity under inhibitory concentrations of mannitol. Importantly, transgenic plants accumulated higher fresh weight under long-term osmotic stress, and also have shown retention of more water than the wild type during drought stress. Overexpression of OsDREB1B in tobacco also improved the oxidative and freezing stress tolerance of transgenic plants. In addition, tobacco plants constitutively expressing OsDREB1B have shown decreased sensitivity to tobacco streak virus infection. Constitutive expression of OsDREB1B in tobacco also induced the expression of PR genes in transgenic plants. The data obtained provide strong in vivo evidence that OsDREB1B is involved in both abiotic and biotic stress responses, and confers broad-spectrum stress tolerance to transgenic plants. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Molecular Biology Springer Journals

Rice DREB1B promoter shows distinct stress-specific responses, and the overexpression of cDNA in tobacco confers improved abiotic and biotic stress tolerance

Loading next page...
 
/lp/springer_journal/rice-dreb1b-promoter-shows-distinct-stress-specific-responses-and-the-9B0q6FNLsq
Publisher
Springer Netherlands
Copyright
Copyright © 2008 by Springer Science+Business Media B.V.
Subject
Life Sciences; Plant Pathology; Biochemistry, general; Plant Sciences
ISSN
0167-4412
eISSN
1573-5028
D.O.I.
10.1007/s11103-008-9391-8
Publisher site
See Article on Publisher Site

Abstract

CBF/DREB (C-repeat binding factor/dehydration responsive element binding factor) family of transcription factors in plants is reported to be associated with regulation of gene expression under stress conditions. Here, we report the functional characterization of a DREB transcription factor, DREB1B gene from rice (Oryza sativa ssp. indica). The OsDREB1B gene was differentially regulated at the transcriptional level by osmotic stress, oxidative stress, salicylic acid, ABA, and cold. A 745 bp promoter region of OsDREB1B cDNA was fused to the β-glucuronidase (GUS) gene and introduced via Agrobacterium tumifaciens into the genome of Arabidopsis. Histochemical analysis of GUS expression in T2 transgenic Arabidopsis plants indicated that OsDREB1B shows stress-specific induction pattern in response to a variety of stresses like mannitol, NaCl, PEG, methyl viologen, cold, ABA, and salicylic acid. Leaf-order-dependent induction pattern of the promoter was observed in response to both cold and ABA stresses. Further, OsDREB1B cDNA was introduced into tobacco plants under the control of CaMV35S promoter to investigate the role of DREB1B product in plant stress response. Transgenic tobacco plants have shown improved seed germination, root growth, membrane stability, and 2, 2-diphenyl-1-pycrilhydrazil hydrate (DPPH) free radical scavenging activity under inhibitory concentrations of mannitol. Importantly, transgenic plants accumulated higher fresh weight under long-term osmotic stress, and also have shown retention of more water than the wild type during drought stress. Overexpression of OsDREB1B in tobacco also improved the oxidative and freezing stress tolerance of transgenic plants. In addition, tobacco plants constitutively expressing OsDREB1B have shown decreased sensitivity to tobacco streak virus infection. Constitutive expression of OsDREB1B in tobacco also induced the expression of PR genes in transgenic plants. The data obtained provide strong in vivo evidence that OsDREB1B is involved in both abiotic and biotic stress responses, and confers broad-spectrum stress tolerance to transgenic plants.

Journal

Plant Molecular BiologySpringer Journals

Published: Aug 28, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off