Rhodanine-based biologically active molecules: synthesis, characterization, and biological evaluation

Rhodanine-based biologically active molecules: synthesis, characterization, and biological... To investigate the antimicrobial properties of the rhodanine (2-thioxo-4-thiazolidinone) structure, several 2-[(5Z)-5-benzylidene-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]-N-phenylacetamide derivatives were synthesized by use of an efficient procedure. Variation of the functional group on the 5-benzylidine ring of rhodanine led to compounds containing a 2-thioxo-4-thiazolidinone group attached to N-phenyl acetamide. The chemical structures of the compounds were confirmed by IR, 1H NMR, and 13C NMR spectroscopy, ESI mass spectrometry, and elemental analysis. The antibacterial and antifungal activity of the compounds were tested, at seven concentrations, against Gram-positive bacterial strains (Pseudomonas aeruginosa ATCC 27853 and Escherichia coli ATCC 25922), Gram-negative bacterial strains (Staphylococcus aureus ATCC 25923 and Bacillus subtilis ATCC 11774), and fungal strains (Candida albicans ATCC 66027 and Aspergillus niger ATCC 6275), by use of the Kirby Bauer disk-diffusion technique and the serial broth dilution technique. The results obtained were compared with those for reference drugs. Relationships between structure and their antimicrobial activity are discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Research on Chemical Intermediates Springer Journals

Rhodanine-based biologically active molecules: synthesis, characterization, and biological evaluation

Loading next page...
 
/lp/springer_journal/rhodanine-based-biologically-active-molecules-synthesis-hWukjfKou8
Publisher
Springer Netherlands
Copyright
Copyright © 2013 by Springer Science+Business Media Dordrecht
Subject
Chemistry; Catalysis; Physical Chemistry; Inorganic Chemistry
ISSN
0922-6168
eISSN
1568-5675
D.O.I.
10.1007/s11164-012-1001-3
Publisher site
See Article on Publisher Site

Abstract

To investigate the antimicrobial properties of the rhodanine (2-thioxo-4-thiazolidinone) structure, several 2-[(5Z)-5-benzylidene-4-oxo-2-thioxo-1,3-thiazolidin-3-yl]-N-phenylacetamide derivatives were synthesized by use of an efficient procedure. Variation of the functional group on the 5-benzylidine ring of rhodanine led to compounds containing a 2-thioxo-4-thiazolidinone group attached to N-phenyl acetamide. The chemical structures of the compounds were confirmed by IR, 1H NMR, and 13C NMR spectroscopy, ESI mass spectrometry, and elemental analysis. The antibacterial and antifungal activity of the compounds were tested, at seven concentrations, against Gram-positive bacterial strains (Pseudomonas aeruginosa ATCC 27853 and Escherichia coli ATCC 25922), Gram-negative bacterial strains (Staphylococcus aureus ATCC 25923 and Bacillus subtilis ATCC 11774), and fungal strains (Candida albicans ATCC 66027 and Aspergillus niger ATCC 6275), by use of the Kirby Bauer disk-diffusion technique and the serial broth dilution technique. The results obtained were compared with those for reference drugs. Relationships between structure and their antimicrobial activity are discussed.

Journal

Research on Chemical IntermediatesSpringer Journals

Published: Jan 22, 2013

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off