Rho-kinase and the nitric oxide pathway modulate basilar arterial reactivity to acetylcholine and angiotensin II in streptozotocin-induced diabetic mice

Rho-kinase and the nitric oxide pathway modulate basilar arterial reactivity to acetylcholine and... Diabetes mellitus comprises a heterogeneous group of metabolic disorders with underlying hyperglycemia and secondary cardiovascular complications. Growing evidence suggests that vascular dysfunction is among the most important causes of diabetic cardiovascular disease. Therefore, we determined whether streptozotocin (STZ)-induced diabetes in mice affects blood pressure and cerebral arterial responsiveness to angiotensin (Ang) II and acetylcholine (ACh), which are important modulators of cerebrovascular autoregulation. Diabetes was induced using a single intraperitoneal injection of STZ (50 mg/kg). Blood pressure was measured in conscious mice using the indirect tail-cuff method. Functional studies of the isolated arteries’ response to vasoactive substances were performed using a micro-organ-bath system at 60 days after STZ injection. Systolic, diastolic, and mean blood pressures significantly increased at days 45 and 60 in the STZ-induced diabetic mice. In the isolated basilar arteries, ACh-induced relaxation, which is dependent on nitric oxide (NO) production from endothelial cells, decreased. In contrast, Ang II-induced contraction, mediated via rho-kinase activation in the smooth muscle, increased in the diabetic mice. There was significantly greater relaxation in the precontracted isolated basilar arteries of diabetic mice that had been treated with Y27632, a rho-kinase inhibitor, than in the control mice arteries. Pretreatment with Nω-nitro-l-arginine (L-NAME), an NO synthase inhibitor, significantly enhanced Ang II-induced contraction and Y27632-induced relaxation in the control basilar arteries but not in the STZ-induced diabetic mice arteries. These results suggest that decreased NO bioavailability and enhanced rho-kinase activity in basilar arteries contribute to altered reactivity to ACh and Ang II, respectively, in STZ-induced diabetic mice. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Naunyn-Schmiedeberg's Archives of Pharmacology Springer Journals

Rho-kinase and the nitric oxide pathway modulate basilar arterial reactivity to acetylcholine and angiotensin II in streptozotocin-induced diabetic mice

Loading next page...
 
/lp/springer_journal/rho-kinase-and-the-nitric-oxide-pathway-modulate-basilar-arterial-YxYBXLsP8x
Publisher
Springer Berlin Heidelberg
Copyright
Copyright © 2017 by Springer-Verlag GmbH Germany
Subject
Biomedicine; Pharmacology/Toxicology; Neurosciences
ISSN
0028-1298
eISSN
1432-1912
D.O.I.
10.1007/s00210-017-1396-x
Publisher site
See Article on Publisher Site

Abstract

Diabetes mellitus comprises a heterogeneous group of metabolic disorders with underlying hyperglycemia and secondary cardiovascular complications. Growing evidence suggests that vascular dysfunction is among the most important causes of diabetic cardiovascular disease. Therefore, we determined whether streptozotocin (STZ)-induced diabetes in mice affects blood pressure and cerebral arterial responsiveness to angiotensin (Ang) II and acetylcholine (ACh), which are important modulators of cerebrovascular autoregulation. Diabetes was induced using a single intraperitoneal injection of STZ (50 mg/kg). Blood pressure was measured in conscious mice using the indirect tail-cuff method. Functional studies of the isolated arteries’ response to vasoactive substances were performed using a micro-organ-bath system at 60 days after STZ injection. Systolic, diastolic, and mean blood pressures significantly increased at days 45 and 60 in the STZ-induced diabetic mice. In the isolated basilar arteries, ACh-induced relaxation, which is dependent on nitric oxide (NO) production from endothelial cells, decreased. In contrast, Ang II-induced contraction, mediated via rho-kinase activation in the smooth muscle, increased in the diabetic mice. There was significantly greater relaxation in the precontracted isolated basilar arteries of diabetic mice that had been treated with Y27632, a rho-kinase inhibitor, than in the control mice arteries. Pretreatment with Nω-nitro-l-arginine (L-NAME), an NO synthase inhibitor, significantly enhanced Ang II-induced contraction and Y27632-induced relaxation in the control basilar arteries but not in the STZ-induced diabetic mice arteries. These results suggest that decreased NO bioavailability and enhanced rho-kinase activity in basilar arteries contribute to altered reactivity to ACh and Ang II, respectively, in STZ-induced diabetic mice.

Journal

Naunyn-Schmiedeberg's Archives of PharmacologySpringer Journals

Published: Jun 27, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off