Revisiting the Paraquat-Induced Sporadic Parkinson’s Disease-Like Model

Revisiting the Paraquat-Induced Sporadic Parkinson’s Disease-Like Model Parkinson’s disease (PD) is a major neurodegenerative disorder that affects 1–2% of the total global population. Despite its high prevalence and publication of several studies focused on understanding its pathology, an effective treatment that stops and/or reverses the damage to dopaminergic neurons is unavailable. Similar to other neurodegenerative disorders, PD etiology may be linked to several factors, including genetic susceptibility and environmental elements. Regarding environmental factors, several neurotoxic pollutants, including 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), have been identified. Moreover, some pesticides/herbicides, such as rotenone, paraquat (PQ), maneb (MB), and mancozeb (MZ), cause neurotoxicity and induce a PD-like pathology. Based on these findings, several in vitro and in vivo PD-like models have been developed to understand the pathophysiology of PD and evaluate different therapeutic strategies to fight dopaminergic neurode- generation. 6-OHDA and MPTP are common models used in PD research, and pesticide-based approaches have become second- ary models of study. However, some herbicides, such as PQ, are commonly used by farming laborers in developing countries. Thus, the present review summarizes the relevant scientific background regarding the use and effects of chronic exposure to PQ in the context of PD. Similarly, we discuss the relevance of PD-like models developed using this http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Molecular Neurobiology Springer Journals

Revisiting the Paraquat-Induced Sporadic Parkinson’s Disease-Like Model

Loading next page...
 
/lp/springer_journal/revisiting-the-paraquat-induced-sporadic-parkinson-s-disease-like-WPh14JCHSj
Publisher
Springer Journals
Copyright
Copyright © 2018 by Springer Science+Business Media, LLC, part of Springer Nature
Subject
Biomedicine; Neurosciences; Neurobiology; Cell Biology; Neurology
ISSN
0893-7648
eISSN
1559-1182
D.O.I.
10.1007/s12035-018-1148-z
Publisher site
See Article on Publisher Site

Abstract

Parkinson’s disease (PD) is a major neurodegenerative disorder that affects 1–2% of the total global population. Despite its high prevalence and publication of several studies focused on understanding its pathology, an effective treatment that stops and/or reverses the damage to dopaminergic neurons is unavailable. Similar to other neurodegenerative disorders, PD etiology may be linked to several factors, including genetic susceptibility and environmental elements. Regarding environmental factors, several neurotoxic pollutants, including 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), have been identified. Moreover, some pesticides/herbicides, such as rotenone, paraquat (PQ), maneb (MB), and mancozeb (MZ), cause neurotoxicity and induce a PD-like pathology. Based on these findings, several in vitro and in vivo PD-like models have been developed to understand the pathophysiology of PD and evaluate different therapeutic strategies to fight dopaminergic neurode- generation. 6-OHDA and MPTP are common models used in PD research, and pesticide-based approaches have become second- ary models of study. However, some herbicides, such as PQ, are commonly used by farming laborers in developing countries. Thus, the present review summarizes the relevant scientific background regarding the use and effects of chronic exposure to PQ in the context of PD. Similarly, we discuss the relevance of PD-like models developed using this

Journal

Molecular NeurobiologySpringer Journals

Published: Jun 3, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off