Revisiting the cube lifecycle in the presence of hierarchies

Revisiting the cube lifecycle in the presence of hierarchies On-line analytical processing (OLAP) typically involves complex aggregate queries over large datasets. The data cube has been proposed as a structure that materializes the results of such queries in order to accelerate OLAP. A significant fraction of the related work has been on Relational-OLAP (ROLAP) techniques, which are based on relational technology. Existing ROLAP cubing solutions mainly focus on “flat” datasets, which do not include hierarchies in their dimensions. Nevertheless, as shown in this paper, the nature of hierarchies introduces several complications into the entire lifecycle of a data cube including the operations of construction, storage, indexing, query processing, and incremental maintenance. This fact renders existing techniques essentially inapplicable in a significant number of real-world applications and mandates revisiting the entire cube lifecycle under the new perspective. In order to overcome this problem, the CURE algorithm has been recently proposed as an efficient mechanism to construct complete cubes over large datasets with arbitrary hierarchies and store them in a highly compressed format, compatible with the relational model. In this paper, we study the remaining phases in the cube lifecycle and introduce query-processing and incremental-maintenance algorithms for CURE cubes. These are significantly different from earlier approaches, which have been proposed for flat cubes constructed by other techniques and are inadequate for CURE due to its high compression rate and the presence of hierarchies. Our methods address issues such as cube indexing, query optimization, and lazy update policies. Especially regarding updates, such lazy approaches are applied for the first time on cubes. We demonstrate the effectiveness of CURE in all phases of the cube lifecycle through experiments on both real-world and synthetic datasets. Among the experimental results, we distinguish those that have made CURE the first ROLAP technique to complete the construction and usage of the cube of the highest-density dataset in the APB-1 benchmark (12 GB). CURE was in fact quite efficient on this, showing great promise with respect to the potential of the technique overall. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The VLDB Journal Springer Journals

Revisiting the cube lifecycle in the presence of hierarchies

Loading next page...
 
/lp/springer_journal/revisiting-the-cube-lifecycle-in-the-presence-of-hierarchies-0I0PnPulgX
Publisher
Springer-Verlag
Copyright
Copyright © 2010 by Springer-Verlag
Subject
Computer Science; Database Management
ISSN
1066-8888
eISSN
0949-877X
D.O.I.
10.1007/s00778-009-0160-3
Publisher site
See Article on Publisher Site

Abstract

On-line analytical processing (OLAP) typically involves complex aggregate queries over large datasets. The data cube has been proposed as a structure that materializes the results of such queries in order to accelerate OLAP. A significant fraction of the related work has been on Relational-OLAP (ROLAP) techniques, which are based on relational technology. Existing ROLAP cubing solutions mainly focus on “flat” datasets, which do not include hierarchies in their dimensions. Nevertheless, as shown in this paper, the nature of hierarchies introduces several complications into the entire lifecycle of a data cube including the operations of construction, storage, indexing, query processing, and incremental maintenance. This fact renders existing techniques essentially inapplicable in a significant number of real-world applications and mandates revisiting the entire cube lifecycle under the new perspective. In order to overcome this problem, the CURE algorithm has been recently proposed as an efficient mechanism to construct complete cubes over large datasets with arbitrary hierarchies and store them in a highly compressed format, compatible with the relational model. In this paper, we study the remaining phases in the cube lifecycle and introduce query-processing and incremental-maintenance algorithms for CURE cubes. These are significantly different from earlier approaches, which have been proposed for flat cubes constructed by other techniques and are inadequate for CURE due to its high compression rate and the presence of hierarchies. Our methods address issues such as cube indexing, query optimization, and lazy update policies. Especially regarding updates, such lazy approaches are applied for the first time on cubes. We demonstrate the effectiveness of CURE in all phases of the cube lifecycle through experiments on both real-world and synthetic datasets. Among the experimental results, we distinguish those that have made CURE the first ROLAP technique to complete the construction and usage of the cube of the highest-density dataset in the APB-1 benchmark (12 GB). CURE was in fact quite efficient on this, showing great promise with respect to the potential of the technique overall.

Journal

The VLDB JournalSpringer Journals

Published: Apr 1, 2010

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off