Revisiting History Effects in Adverse-Pressure-Gradient Turbulent Boundary Layers

Revisiting History Effects in Adverse-Pressure-Gradient Turbulent Boundary Layers The goal of this study is to present a first step towards establishing criteria aimed at assessing whether a particular adverse-pressure-gradient (APG) turbulent boundary layer (TBL) can be considered well-behaved, i.e., whether it is independent of the inflow conditions and is exempt of numerical or experimental artifacts. To this end, we analyzed several high-quality datasets, including in-house numerical databases of APG TBLs developing over flat-plates and the suction side of a wing section, and five studies available in the literature. Due to the impact of the flow history on the particular state of the boundary layer, we developed three criteria of convergence to well-behaved conditions, to be used depending on the particular case under study. (i) In the first criterion, we develop empirical correlations defining the R e 𝜃 -evolution of the skin-friction coefficient and the shape factor in APG TBLs with constant values of the Clauser pressure-gradient parameter β = 1 and 2 (note that β = δ ∗/τ w dP e /dx, where δ ∗ is the displacement thickness, τ w the wall-shear stress and dP e /dx the streamwise pressure gradient). (ii) In the second one, we propose a predictive method to obtain the skin-friction curve corresponding to an APG TBL subjected to any streamwise evolution of β, based only on data from zero-pressure-gradient TBLs. (iii) The third method relies on the diagnostic-plot concept modified with the shape factor, which scales APG TBLs subjected to a wide range of pressure-gradient conditions. These three criteria allow to ensure the correct flow development of a particular TBL, and thus to separate history and pressure-gradient effects in the analysis. "Flow, Turbulence and Combustion" Springer Journals

Revisiting History Effects in Adverse-Pressure-Gradient Turbulent Boundary Layers

Loading next page...
Springer Netherlands
Copyright © 2017 by The Author(s)
Engineering; Engineering Fluid Dynamics; Fluid- and Aerodynamics; Engineering Thermodynamics, Heat and Mass Transfer; Automotive Engineering
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial