Retrieval effectiveness of an ontology-based model for information selection

Retrieval effectiveness of an ontology-based model for information selection Technology in the field of digital media generates huge amounts of nontextual information, audio, video, and images, along with more familiar textual information. The potential for exchange and retrieval of information is vast and daunting. The key problem in achieving efficient and user-friendly retrieval is the development of a search mechanism to guarantee delivery of minimal irrelevant information (high precision) while insuring relevant information is not overlooked (high recall). The traditional solution employs keyword-based search. The only documents retrieved are those containing user-specified keywords. But many documents convey desired semantic information without containing these keywords. This limitation is frequently addressed through query expansion mechanisms based on the statistical co-occurrence of terms. Recall is increased, but at the expense of deteriorating precision. One can overcome this problem by indexing documents according to context and meaning rather than keywords, although this requires a method of converting words to meanings and the creation of a meaning-based index structure. We have solved the problem of an index structure through the design and implementation of a concept-based model using domain-dependent ontologies. An ontology is a collection of concepts and their interrelationships that provide an abstract view of an application domain. With regard to converting words to meaning, the key issue is to identify appropriate concepts that both describe and identify documents as well as language employed in user requests. This paper describes an automatic mechanism for selecting these concepts. An important novelty is a scalable disambiguation algorithm that prunes irrelevant concepts and allows relevant ones to associate with documents and participate in query generation. We also propose an automatic query expansion mechanism that deals with user requests expressed in natural language. This mechanism generates database queries with appropriate and relevant expansion through knowledge encoded in ontology form. Focusing on audio data, we have constructed a demonstration prototype. We have experimentally and analytically shown that our model, compared to keyword search, achieves a significantly higher degree of precision and recall. The techniques employed can be applied to the problem of information selection in all media types. The VLDB Journal Springer Journals

Retrieval effectiveness of an ontology-based model for information selection

Loading next page...
Copyright © 2004 by Springer-Verlag
Publisher site
See Article on Publisher Site


You’re reading a free preview. Subscribe to read the entire article.

DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches


Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.



billed annually
Start Free Trial

14-day Free Trial