Rethinking classification results based on read speech, or: why improvements do not always transfer to other speaking styles

Rethinking classification results based on read speech, or: why improvements do not always... With the growing interest among speech scientists in working with natural conversations also the popularity for using articulatory–acoustic features as basic unit increased. They showed to be more suitable than purely phone-based approaches. Even though the motivation for AF classification is driven by the properties of conversational speech, most of the new methods continue to be developed on read speech corpora (e.g., TIMIT). In this paper, we show in two studies that the improvements obtained on read speech do not always transfer to conversational speech. The first study compares four different variants of acoustic parameters for AF classification of both read and conversational speech using support vector machines. Our experiments show that the proposed set of acoustic parameters substantially improves AF classification for read speech, but only marginally for conversational speech. The second study investigates whether labeling inaccuracies can be compensated for by a data selection approach. Again, although an substantial improvement was found with the data selection approach for read speech, this was not the case for conversational speech. Overall, these results suggest that we cannot continue to develop methods for one speech style and expect that improvements transfer to other styles. Instead, the nature of the application data (here: read vs. conversational) should be taken into account already when defining the basic assumptions of a method (here: segmentation in phones), and not only when applying the method to the application data http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Speech Technology Springer Journals

Rethinking classification results based on read speech, or: why improvements do not always transfer to other speaking styles

Loading next page...
 
/lp/springer_journal/rethinking-classification-results-based-on-read-speech-or-why-br0bILzrcC
Publisher
Springer US
Copyright
Copyright © 2017 by The Author(s)
Subject
Engineering; Signal,Image and Speech Processing; Social Sciences, general; Artificial Intelligence (incl. Robotics)
ISSN
1381-2416
eISSN
1572-8110
D.O.I.
10.1007/s10772-017-9436-y
Publisher site
See Article on Publisher Site

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial